1. Let \(A \overset{\text{def}}{=} \{0, -1, 5\} \) and \(B \overset{\text{def}}{=} \{1, 3, 0, 3\} \). List all the elements of the following sets using the standard curly brace notation. For each set give its cardinality:

a) \(A \cup B \);
b) \(A \cap B \);
c) \(A \times B \);
d) \(A - B \);
e) \((A \times \{0\}) \cup (B \times \{1\}) \);

2. Find a predicate \(\varphi \) to express the following sets of integers using the notation \(\{x \mid \varphi(x)\} \).

a) The set of all natural numbers divisible by 7;
b) \(\{x \mid x \geq 0 \text{ and } x < 1000\} \cap \{x \mid x > -10 \text{ and } x \leq 10\} \);
c) \(\{0, 1\} \times \{x \mid x \geq 0 \text{ and } x \leq 5\} \);

3. Prove the following. You can use Venn diagrams for inspiration.

a) \(X \cup (Y \cup Z) = (X \cup Y) \cup Z \);
b) \(X \cap (Y \cap Z) = (X \cap Y) \cap Z \);
c) \(X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z) \);
d) \(X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z) \);
e) \(X \cup (Y_1 \cap \cdots \cap Y_k) = (X \cup Y_1) \cap \cdots \cap (X \cup Y_k) \) for any \(k > 0 \) and sets \(Y_1, \ldots, Y_k \).
4. Suppose X, Y and Z are sets. Does $X \times (Y + Z) = X \times Y + X \times Z$?
 If X, Y and Z are finite, what can we say about the cardinalities of
 $X \times (Y + Z)$ and $X \times Y + X \times Z$?

5. Suppose that X and Y are sets and $X \times Y$ is their cartesian product.
 There are two functions known as the projections: $\pi_1 : X \times Y \to X$ and
 $\pi_2 : X \times Y \to Y$; defined $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$ respectively.

 a) show that given a third set Z and functions $f : Z \to X$, $g : Z \to Y$,
 there exists a function $h : Z \to X \times Y$ satisfying $h; \pi_1 = f$ and
 $h; \pi_2 = g$; (hint: start by drawing a diagram with all the functions)
 b) show that the function h is the unique such function; i.e. if there
 exists h' with $h'; \pi_1 = f$ and $h'; \pi_2 = g$ then $h = h'$.

6. Suppose that X and Y are sets and $X + Y$ is their sum. There are two
 functions known as the injections: $i_1 : X \to X + Y$ and $i_2 : Y \to X + Y$;
 defined $i_1(x) = (x, 0)$ and $i_2(y) = (y, 1)$ respectively.

 a) show that given a third set Z and functions $f : X \to Z$, $g : Y \to Z$,
 there exists a function $h : X + Y \to Z$ satisfying $i_1; h = f$ and
 $i_2; h = g$;
 b) show that h is the unique such function.