COMP2210: Theory of Computing

Lecture 14

Decidability and Universal Turing Machines

Corina Cirstea
Objectives for Today

- Recursively Enumerable and Recursive Sets
- Decidable and Semidecidable Properties
Recall: TMs, informally

- Start in the start state $s \in Q$ at the leftmost position on the tape;
- In each step the TM is in some state q and at tape position with γ. Depending on q and γ it will:
 1. write a new symbol at current tape position,
 2. move left or right and
 3. change state.
- a TM accepts by reaching a special accept state $t \in Q$, rejects by entering a special reject state $r \in Q$.
Recursive & recursively enumerable sets

- write $L(M)$ for the set of strings accepted by M.
- a set of strings (a language) is called recursively enumerable when there is some TM M that accepts it;
- a TM that halts on all inputs is called total;
- a set/language is called recursive when there is some total TM M that accepts it.
- the set $\{ a^n b^n c^n | n \geq 0 \}$ is recursive.
 - last lecture: TM M that accepts when initially the tape is of the form $\vdash a^n b^n c^n$ for any $n \in N$ and rejects otherwise.
Properties vs Languages

- Suppose P is a property of strings – i.e. for any $x \in \Sigma^*$ either $P(x)$ or $\neg P(x)$

 (e.g. “has length 2”)

- P is decidable $\overset{\text{def}}{=} \{ x \in \Sigma^* | P(x) \}$ is recursive.

- P is semidecidable $\overset{\text{def}}{=} \{ x \in \Sigma^* | P(x) \}$ is r.e.

- notions decidable/recursive & semidecidable/r.e.
 are equivalent:

 A is recursive $\iff “x \in A”$ is decidable, A is r.e. $\iff “x \in A”$ is semidecidable
Recursive sets

• are accepted by *total* Turing machines;

Lemma. Recursive sets are closed under complement.

Proof. Suppose that \(A \) is accepted by \(M \). Then to accept \(\Sigma^* - A \) it suffices to construct \(M' \) that is like \(M \) but with swapped accept and reject states.
Recursively enumerable sets

- are accepted by (ordinary) Turing machines;
- *not* in general closed under complement (proof on previous slide does not work, why?)

Lemma. If both A and $\neg A$ are r.e. then A is recursive.

Idea. Suppose that M is a TM for A and M' is a TM for $\neg A = \Sigma^* - A$. Construct a *total* TM N that simulates running M and M' simultaneously.
The simulation, 1

- for all $\gamma \in \Gamma$ and $\delta \in \Gamma'$, N has the following tape symbols:

- **Idea:** Each cell represents two cells – one of M and one of M' – “hats” mark positions of heads.

- **Simulation:** If the input is $x_1 \ldots x_k$, N first rewrites the non-empty portion of tape as follows:
The simulation, 2

- \(N \) then performs the following loop:
 1. scans the tape to find a symbol with a hat in the "upper" section of the tape. Then, according to the transitions of \(M \), it performs \(M \)'s move.
 2. if \(M \) accepts then \(N \) accepts;
 3. scans the tape to find a symbol with a hat in the "lower" section of the tape. Then, according to the transitions of \(M' \), it performs \(M' \)'s move.
 4. if \(M' \) accepts then \(N \) rejects;

- Any \(x \) is either in \(A \) or \(\Sigma^* - A \). So it is accepted by either \(M \) or \(M' \). So \(N \) will eventually accept or reject! Thus \(N \) is total and so \(A \) is recursive.