Objectives for Today

- Multi-Tape Turing Machines
- Universal Turing Machine
Multiple tapes

- We could define a TM with multiple tapes:
 - input on first tape, other tapes initially blank
 - transition function has type \(\delta : Q \times \Gamma^3 \rightarrow Q \times \Gamma^3 \times \{L, R\}^3 \)

- **Q.** More powerful than an ordinary one-tape TM?
 - **A. No!** We can use a similar construction to the one in Lecture 14 to construct a one-tape TM \(N \) that simulates a multi-tape TM \(M \);
 - one \(M \)-move simulated with several \(N \)-moves (see Kozen pp. 222-223)
Universal Turing Machine

- there exists a TM U such that:

$$L(U) = \{ M \#x \mid x \in L(M) \}$$

- here ‘$M \#x$’ means: encoding of M followed by a separator $\#$ followed by encoding of string x in M’s input alphabet.

- U will work roughly as follows:

1. check whether M and x are correct encodings, reject if not
2. simulate M on x;
3. accept if M accepts, reject if M rejects.
The UTM and Real Life

- The UTM is a complex exercise in hacking TMs;
- Not just a theoretical curiosity, we use things like UTM every day
- In terms of programming langs, it is an interpreter - a program that takes in program + input and simulates the expected computation, eg:
 - a C interpreter written in C
 - a Java interpreter written in Java
 - a Java interpreter written in C, etc.
- clearly related to compilers... (except the UTM was described in the 1930’s!)
Encoding Turing Machines

• details not important, many possible ways;

• e.g. (Kozen) – the encoding starts with

\[0^n 10^m 10^k 10^s 10^t 10^r 10^u 10^v \]

• decodes to: states \(\{0, 1, \ldots, n - 1\} \), tape alphabet \(\{0, 1, \ldots, m - 1\} \) of which first \(k \) numbers is the input alphabet. The start, accept and reject states are \(s, t \) and \(r \). The blank symbols is \(u \) and the endmarker is \(v \).

• the remainder might consist of strings:

\[0^p 10^a 10^q 10^b 10 \]

that decode to: \(\delta(p, a) = (q, b, L) \).
Constructing a UTM U

- On $M \neq x$, first checks that encodings are correct;
- Use three tapes to store:
 1. description of M;
 2. contents of M’s tape;
 3. M’s current state & position on its tape;
- in each step, U:
 - looks at M’s current state and head position (tape 3);
 - reads the tape contents at the correct position (tape 2);
 - reads the relevant transition (tape 1);
 - simulates transition, updating tape, state and head position;
 - accepts if M accepts, rejects if M rejects.
UTM and the halting problem

- the UTM is quite primitive – it reads in (encoding of) a TM \(M \), an (encoding of) input \(x \) and simulates \(M \) on \(x \) – accepting, rejecting or looping depending on what \(M \) does, indeed:

\[
L(U) = \{ M \# x \mid x \in L(M) \}
\]

and the UTM will loop on \(M \# x \) whenever \(M \) loops on \(x \);

- can we come up with a smarter TM?

- for example, consider the following set: is it recursive?

\[
\text{HP} \overset{\text{def}}{=} \{ M \# x \mid M \text{ halts on } x \}
\]
The halting problem

- In other words, can we come up with the following total TM. On $M \#x$ it:
 - halts and accepts if M halts on x (either accepts or rejects);
 - halts and rejects if M loops on x.

- Equivalent to writing a C program that takes a .zip file containing some C program X together with some input x, and returns
 - 0 if X halts on x;
 - 1 if X gets into an infinite loop on x.

- This would be useful for compiler engineers!