COMP2210: Theory of Computing

Lecture 16

Diagonalisation & Halting Problem

Corina Cirstea
Objectives for Today

- The Halting Problem
- Diagonalisation
- Undecidability of the Halting Problem
The UTM

- The UTM reads an (encoding of) a TM M, an (encoding of) input x and simulates M on x

$$L(U) = \{ M \# x \mid x \in L(M) \}$$

- UTM will loop on $M \# x$ if M loops on x;
- Can we come up with a smarter TM?
- For example, consider the following: is it recursive?

$$\text{HP} \overset{\text{def}}{=} \{ M \# x \mid M \text{ halts on } x \}$$
The Halting Problem

• In other words, can we come up with the following total TM K. On $M \neq x$ it:
 ○ halts and accepts if M halts on x
 ✴ i.e. M either accepts or rejects x;
 ○ halts and rejects if M loops on x.

• In this lecture we will prove that no such K is possible! So there are real theoretical limitations to the power of algorithms.
Diagonalisation, 1

• A proof technique due to Cantor. How to show that $2^\mathbb{N}$ is a ‘larger’ infinity than \mathbb{N}?

• Recall:

 o $2^\mathbb{N}$ is the set of subsets of \mathbb{N};

 o alternatively, it is the set of functions $\mathbb{N} \rightarrow \{0, 1\}$.

 $A \subseteq \mathbb{N} \quad \mapsto \quad f_A(n) = \begin{cases}
 1 & \text{if } n \in A \\
 0 & \text{if } n \notin A
\end{cases}$

 $f : \mathbb{N} \rightarrow \{0, 1\} \quad \mapsto \quad \{ \ n \mid f(n) = 1 \ \}$

• **Claim**: there is no onto function $\varphi : \mathbb{N} \rightarrow 2^\mathbb{N}$.

• We cannot number all of the subsets of \mathbb{N}, there are too many!
Proof: Suppose \(\varphi : \mathbb{N} \rightarrow 2^\mathbb{N} \) is any function whatsoever. Then we can draw a table:

\[
\begin{array}{l|cccc}
 & 0 & 1 & 2 & \ldots \\
\hline
\varphi(0) & 0 & 1 & 0 & \ldots \\
\varphi(1) & 1 & 1 & 0 & \ldots \\
\varphi(2) & 0 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]

Consider the subset of \(\mathbb{N} \):

\[\psi(i) = 1 - (\varphi(i))(i)\]

— i.e. complement the diagonal in the table. \(\psi \) does not appear in the table — it differs with \(\varphi(k) \) at \(k \)! So \(\varphi \) is not onto.

we made no assumptions about \(\varphi \), so there are no onto functions!
Halting Problem

- A similar argument can be used to show that:

There does not exist a total TM K that decides whether, given some TM M and input x, M halts on x.

- Can enumerate all strings over $\{0, 1\}$:
 - $\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots$

- Can enumerate all TMs with input alphabet $\{0, 1\}$
 - $M_\epsilon, M_0, M_1, M_{00}, M_{01}, M_{10}, M_{11}, \ldots$
 - where M_b is the TM with binary encoding b
Undecidability of the Halting Problem

• Suppose that a total TM K exists that decides whether a given TM halts or not on a given input. We can construct a table:

<table>
<thead>
<tr>
<th></th>
<th>ϵ</th>
<th>0</th>
<th>1</th>
<th>00</th>
<th>01</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_ϵ</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>M_0</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>M_1</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>M_{00}</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>M_{01}</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consider the TM N that on x:

1. constructs M_x from x and writes $M_x\#x$ on tape;
2. runs K on $M_x\#x$;
3. if K accepts then N goes into a trivial loop. If K rejects then N accepts.

Then N is not in the table – its behaviour differs from M_b at b!
Undecidability ctd.

- Since we took the table on the previous slide so that it contains *all the* TM’s with input alphabet \(\{0, 1\} \), we can derive a contradiction – we have constructed a TM that is *not* in the table!

- Any finite portion of the table can be constructed assuming only that \(K \), the total TM for the halting problem, exists, so:

 \[K \text{ exists} \quad \not\Rightarrow \quad \text{table with all TMs} \quad \not\Rightarrow \quad \text{contradiction} \]

- Hence \(K \) cannot exist.
Halting Problem in C

- simplify to C programs that take binary as input
- is it possible to write a C program Q that takes a C program + input and decides whether the program terminates on the input?

We can write a program R that on input k:

<table>
<thead>
<tr>
<th>Q</th>
<th>0</th>
<th>1</th>
<th>00</th>
<th>01</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_0</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_1</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_{00}</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_{01}</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

1. runs Q on (P_k, k) (we have access to Q’s source!)
2. if Q says H, go into an infinite loop;
3. if Q says L, stop.

- R does not appear in the table! (why?) – so Q does not exist!
Halting Problem

\[\text{HP} \overset{\text{def}}{=} \{ M \# x \mid M \text{ halts on } x \} \]

- We have shown that the set HP is not recursive.
Halting Problem

\[HP \overset{\text{def}}{=} \{ M\#x \mid M \text{ halts on } x \} \]

- We have shown that the set \(HP \) is not recursive.
- It is recursively enumerable (why?):
 - if it were then \(HP \) would be recursive by construction from last lecture;
- So \(\neg HP \) cannot even be recursively enumerable!
- It follows that

\[\{ M\#x \mid M \text{ loops on } x \} \]

is not a r.e. set.
The big picture

\[2^{\Sigma^*} \]

recursively enumerable

recursive

context-free

regular

\[\{ a^n b^n \mid n \geq 0 \} \]

\[\{ a^n b^n c^n \mid n \geq 0 \} \]

HP

\neg HP