COMP2210: Theory of Computing

Lecture 18

Reductions

Corina Cirstea
Objectives for Today

• Reductions

By the end of this lecture, you should be able to:

• understand the notion of reduction between two languages
• explain how reductions are used to prove (un)decidability results
• produce reductions that prove certain problems not to be decidable (semi-decidable)
Properties of Languages

- HP and MP talk about arbitrary inputs to TMs. What about “simpler” problems?
- Q. Can we decide, given any TM M as input, whether M accepts ϵ?
- i.e. is $A \overset{\text{def}}{=} \{ M \mid \epsilon \in L(M) \}$ a recursive set?
- A. No! We will see that we can reduce HP to it.

“HP $\leq A$”
The proof

\[A \overset{\text{def}}{=} \{ M \mid \epsilon \in L(M) \} \]

- Suppose that \(K \) is a total TM that accepts \(A \).
- We construct \(N \) that, on input \(M \# x \):
 1. Constructs \(M' \), that on any input \(y \) ignores its input and simulates \(M \) on \(x \). If \(M \) accepts or rejects, then \(M' \) accepts.
 2. Simulates \(K \) on \(M' \); If \(K \) accepts then accept, if it rejects then reject.

\[
N \text{ accepts } M \# x \iff K \text{ accepts } M' \\
\iff \epsilon \in L(M') \iff M \text{ halts on } x
\]
Recap

\[
\text{MP} \overset{\text{def}}{=} \{ M \# x \mid x \in L(M) \}
\]

\[
A \overset{\text{def}}{=} \{ M \mid \epsilon \in L(M) \}
\]

- We have shown, through reduction from HP, that \(\text{MP} \) and \(A \) are undecidable.

- The proof:
 - if \(A \) or \(\text{MP} \) was decidable, there would be a total TM for it;
 - and we could use this TM to solve HP!
Reduction, formally

- A function \(f : \Sigma^* \rightarrow \Delta^* \) is **computable** when there exists a *total* TM \(K \) that when started with \(x \in \Sigma^* \) on its tape, eventually halts with \(f(x) \in \Delta^* \) on its tape;

- A *reduction* of \(A \subseteq \Sigma^* \) to \(B \subseteq \Delta^* \) is a computable function \(f : \Sigma^* \rightarrow \Delta^* \) s.t. \(x \in A \iff f(x) \in B \);

- Write \(A \leq B \) if there is a reduction from \(A \) to \(B \).
Examples

• $\text{HP} \leq \text{MP}$;

 $\circ M \#x \mapsto M' \#x$;

• $\text{HP} \leq \{ M \mid \epsilon \in L(M) \}$;

 $\circ M \#x \mapsto M'$;

• ...
Properties of reductions

• If $A \leq B$ and B is r.e. then so is A. Equivalently, if A is not r.e. then B is not r.e.;

 Proof. If $A \leq B$ then there is a computable function f that takes $a \in A$ to $f(a) \in B$. If B is r.e. then there is a TM M that accepts it. The following is a TM N for A: on x, first compute $f(x)$, then run M on $f(x)$, accept if it accepts, reject if it rejects.

 \[x \in L(N) \iff f(x) \in L(M) \iff f(x) \in B \iff x \in A \]

• If $A \leq B$ and B is recursive then so is A. Equivalently, if A isn’t recursive then neither is B.

 Proof. Similar to above.