1. Use diagonalisation to show that the membership problem is undecidable. That is, show that the following language is not recursive:

\[MP \equiv \{ M \# x \mid x \in L(M) \}. \]

2. Prove that \(LP \equiv \{ M \# x \mid M \text{ loops on } x \} \) is not recursively enumerable.

3. Construct a reduction from \(LP \equiv \{ M \# x \mid M \text{ loops on } x \} \) to \(\{ M \mid L(M) = \emptyset \} \) to prove that the latter is not recursively enumerable.

4. Show that the language \(A \equiv \{ M \mid L(M) = L(a^*) \} \) is not recursive by constructing a reduction from HP.

5. Show that the language \(\{ M \mid M \text{ loops on some input} \} \) is not r.e.

6. Show that the following problems are undecidable:

 (i) given TMs \(M \) and \(N \), does \(L(M) = L(N) \)? Hint: Use Question 4.

 (ii) given TMs \(M \) and \(N \), does \(L(M) \subseteq L(N) \)? Hint: Use Question 3.

 (iii) given TMs \(M \) and \(N \), is \(L(M) \cap L(N) = \emptyset \)? Hint: Use Question 3.