1. Use diagonalisation to show that the membership problem is undecidable. That is, show that the following language is not recursive:

\[\text{MP} \overset{\text{def}}{=} \{ M\#x \mid x \in L(M) \} \]

Solution. Suppose that there is a total TM \(K \) that accepts MP. If we were to draw the corresponding table, then the TM \(N \) that “negates the diagonal” would work as follows: \(N \) on input \(x \) constructs \(M_x \) and simulates the running of \(K \) on \(M_x\#x \). If the simulation ends with \(K \) accepting, then \(N \) rejects, otherwise \(N \) accepts.

Then \(N \) is a perfectly good TM, so it is \(M_n \) for some \(n \). In particular we have

\[n \in L(M_n) \iff N \text{ accepts n } \iff K \text{ rejects } M_n\#n \iff n \notin L(M_n) \]

Which is a contradiction. What has gone wrong is that we assumed that \(N \) is in the table (that it is \(M_n \) for some \(n \)) but by its construction its behaviour is different from every row in the table at the diagonal entry. The conclusion is that no total \(K \) that treats all TMs can exist, so MP is undecidable.

2. Prove that \(\text{LP} \overset{\text{def}}{=} \{ M\#x \mid M \text{ loops on } x \} \) is not recursively enumerable.

Solution. We have proven that

\[\text{HP} \overset{\text{def}}{=} \{ M\#x \mid M\#x \text{ are correct encodings of a TM and an input, and } M \text{ halts on } x \} \]

is recursively enumerable but not recursive. It is not difficult to see that

\[\overline{\text{HP}} = \text{LP} \cup \{ M\#x \mid M\#x \text{ are correct encodings of a TM and an input.} \} \]

The second set in the union is recursive, so if \(LP \) were recursively enumerable so would \(\overline{\text{HP}} \), but we know that if a set and its complement are recursively enumerable then, in fact, it must be recursive. But \(\overline{\text{HP}} \) is not recursive, so \(LP \) cannot be recursively enumerable.

3. Construct a reduction from \(\text{LP} \overset{\text{def}}{=} \{ M\#x \mid M \text{ loops on } x \} \) to \(\{ M \mid L(M) = \emptyset \} \) to prove that the latter is not recursively enumerable.

Solution. We take \(M\#x \) to a TM \(M' \) that on input \(y \):

- (a) ignores its input \(y \);
- (b) simulates \(M \) on \(x \);
(c) if the simulation finishes then M' accepts.

If M loops on x then $L(M') = \emptyset$ because step (a) never terminates. On the other hand if M halts on x then $L(M') = \Sigma^* \neq \emptyset$.

4. Show that the language $A \overset{\text{def}}{=} \{ M \mid L(M) = L(a^*) \}$ is not recursive by constructing a reduction from HP.

Solution. Recall that HP $\overset{\text{def}}{=} \{ M\#x \mid M \text{ halts on } x \}$. We need to describe how to get from a string $M\#x$ to a description of a TM M' in a way that satisfies the property:

$$M \text{ halts on } x \iff L(M') = L(a^*).$$

This construction needs to be an algorithm – something for which we could construct a TM.

So, given $M\#x$ we can construct the TM M' with behaviour as summed up below: M' on input y:

(a) remembers y (on the tape);
(b) simulates M on x;
(c) checks whether $y \in L(a^*)$. Accepts if yes, rejects if no.

There is no magic going on. We know that we can do step (a) as TMs can simulate other TMs. Step (b) is simple: a TM can certainly do the job of a DFA!

Now if M halts on x then the simulation in the first phase of M' will always stop and so $L(M') = L(a^*)$. If M loops on x then the simulation will not finish and so $L(M') = \emptyset \neq L(a^*)$. We have thus described a reduction from HP, proving that A is not recursive.

5. Show that the language $\{ M \mid M \text{ loops on some input} \}$ is not r.e.

Solution. Reduction from LP.

We need to describe how to go from $M\#x$ to M' such that ‘M loops on x’ if and only if ‘M' loops on some input’.

One construction that works is: M' on input y,

(a) ignores its input y;
(b) simulates M on x;
(c) if the simulation finishes then M' accepts.

Now if M loops on x then the simulation in the first step does not terminate and so M' loops on all inputs. On the other hand if M' loops on some input then it must be that the simulation does not finish – i.e. M loops on x.

2
6. Show that the following problems are undecidable:

(i) given TMs M and N, does $L(M) = L(N)$? Hint: Use Question 4.

Solution. We know that it is easy to design a TM M so that $L(M) = L(a^*)$. If the problem were decidable then $\{ N \mid L(N) = L(a^*) \}$ would be recursive (why?), but we know from Question 4 that it is not.

(ii) given TMs M and N, does $L(M) \subseteq L(N)$? Hint: Use Question 3.

Solution. If the above were decidable then the language $A \overset{\text{def}}{=} \{ M \mid L(M) \subseteq \emptyset \}$ would be recursive (why?). But we know from Question 3 that A is not even recursively enumerable.

Solution. If it were then also (i) would be decidable since to prove that $L(M) = L(N)$ it is enough to check whether $L(M) \subseteq L(N)$ and $L(N) \subseteq L(M)$. Thus it is not decidable.

(iii) given TMs M and N, is $L(M) \cap L(N) = \emptyset$? Hint: Use Question 3.

Solution. Let M be a total TM that accepts all inputs, ie $L(M) = \Sigma^*$. Then if the above were decidable then the language $B \overset{\text{def}}{=} \{ N \mid L(N) = \emptyset \}$ would be recursive (why?). But we know from Question 3 that B is not even r.e.