COMP2210 CLASS TEST 2

Answers must be copied to the answer sheet or they will be ignored!
The test has 29 questions to complete in 45 minutes.
No documents allowed. The use of electronic calculators is forbidden.

We denote with \mathbb{N} the set of natural numbers including 0.

Question 1 Is $\{a^nb^m \mid n, m \in \mathbb{N} \& n > m\} \cup \{a^nb^m \mid n, m \in \mathbb{N} \& n < m\}$ regular? (2pt)

- [] NO
- [B] YES

Question 2 Is $\{a^nb^m \mid n, m \in \mathbb{N} \& n > m\} \cup \{a^nb^m \mid n, m \in \mathbb{N} \& n \leq m\}$ regular? (2pt)

- [A] NO
- [] YES

Question 3 Is $\{a, b\}^* \setminus \{a^n b^n \mid n \in \mathbb{N} \& n > 0\}$ regular? (2pt)

- [] NO
- [B] YES

Question 4 Is there a regular language L such that $L = L_1 \cup L_2$ where both L_1 and L_2 are not regular languages? (2pt)

- [B] NO

Question 5 Is $\{a^n b^n \mid n \in \mathbb{N} \& n > 0\} \cup L(a^*b^*)$ regular? (2pt)

- [B] NO

Question 6 Is $\{a^n b^{2m} \mid n, m \in \mathbb{N} \& n, m > 0\}$ regular? (2pt)

- [A] NO
- [] YES

A string of parentheses is balanced when each left parenthesis has a corresponding right parenthesis, and the pairs are well-nested. For example, $(O)(O)$ and $(O)O$ are balanced while (O) and $O))$ are not. Consider the context-free grammar $G = (\{S\}, \{(),\}, P, S)$ where P is defined as follows:

$$S \rightarrow (S) \mid SSSS \mid \epsilon$$

Answer the following 3 questions:

Question 7 Is $L(G)$ the set of all balanced parentheses? (2pt)

- [A] NO
- [B] YES

Question 8 Is $((O)(O))$ a sentence of G? (2pt)

- [A] NO
- [B] YES
Corrected

Question 9 Is the following a derivation of G? (2pt)

$$S \Rightarrow (S) \Rightarrow (SSSS) \Rightarrow ((S)SS) \Rightarrow ((S)(S)) \Rightarrow (((S))S) \Rightarrow (((S))(S)))$$

- A YES
- NO

End of this group.

Let M be the pushdown automaton defined below.

![Diagram of pushdown automaton](image)

Answer the following 4 questions:

Question 10 Is $\{ a^n b^m \mid m, n \in \mathbb{N} \& m > n \}$ the language of all strings accepted by M by final state? (2pt)

- A YES
- NO

Question 11 Is $\{ a^n b^m \mid m, n \in \mathbb{N} \& m \geq n \}$ the language of all strings accepted by M by empty stack? (2pt)

- NO
- B YES

Question 12 Is the following an accepting computation of M by final state? (1pt)

$$(0, abb, \bot) \rightarrow (0, bb, a\bot) \rightarrow (1, b, \bot) \rightarrow (1, \epsilon, \bot) \rightarrow (2, \epsilon, \epsilon)$$

- A NO
- YES

Question 13 Is the following an accepting computation of M by empty stack? (1pt)

$$(0, abb, \bot) \rightarrow (0, bb, a\bot) \rightarrow (1, b, \bot) \rightarrow (1, \epsilon, \bot)$$

- NO
- B YES

End of this group.

Let $G = \{N, \{a, b, c\}, P, S\}$ be the context-free grammar where P is defined as follows:

$$S \rightarrow aSc \mid aA \mid B \quad A \rightarrow aAc \mid aA \mid \epsilon \mid C \quad B \rightarrow bBc \mid bC \quad C \rightarrow bCc \mid bC \mid \epsilon$$

Answer the following 2 questions:

Question 14 Is $L(G) = \{wc^n \mid n \in \mathbb{N} \& w \in L(a^*b^*) \& |w| > n\}$? (2pt)

- YES
- NO
Corrected

Question 15 Is \(L(G) \subseteq \{a^nb^m c^k \mid m, n, k \in \mathbb{N} \) & \(k \neq n + m \}? \) (2pt)

[A] YES [B] NO

End of this group.

Question 16 Is \(\{a^m b^n \mid n, m \in \mathbb{N} \) & \(n \geq m \} \cup \{a^m b^n \mid n, m \in \mathbb{N} \) & \(n \leq m \} \) regular? (2pt)

[A] NO [B] YES

Let \(G = (N, \{a, b\}, P, S) \) be a context-free grammar with

\[P = \{(S, ABC),(S, aBb),(A, B),(B, C),(C, \epsilon),(C, A)\} \]

Answer the following 5 questions:

Question 17 Is \(\{(S, ABC),(A, B),(B, C),(C, A)\} \) the set of all unit-production of \(G \)? (1pt)

[A] NO [B] YES

Question 18 Is \(G \) in Greibach normal form? (1pt)

[A] NO [B] YES

Question 19 Is \(\epsilon \) derivable from \(S \) in \(G \)? (1pt)

[A] NO [B] YES

Question 20 Is \(B \) derivable from \(S \)? (1pt)

[A] NO [B] YES

Question 21 Is \(\{a^n b^n \mid n \in \mathbb{N} \} \subseteq L(G) \)? (2pt)

[A] YES [B] NO

End of this group.

Let \(L = \{a^{2n}b^{2n} \mid n \in \mathbb{N} \} \). Consider the demon game. Suppose that for any \(k > 0 \) picked by the demon, we pick \(x = a^k, y = a^k b^k \), and \(z = b^k \). Answer the following 3 questions.

For all \(u, v, w \) such that \(y = uvw \) and \(v \neq \epsilon \),

Question 22 is \(xuw^0wz \notin L \)? (2pt)

[A] NO [B] YES

Question 23 is \(xuw^2wz \notin L \)? (2pt)

[A] NO [B] YES
Corrected

Question 24
is $xuv^2wz \notin L$? (2pt)

- **YES**
- **B NO**

End of this group.

Question 25
Let G be any context-free grammar in Chomsky normal form and in Greibach normal form. Is $L(G)$ regular? (2pt)

- **A NO**
- **B YES**

Question 26
Is $\{a^n b^m c^k \mid m, n, k \in \mathbb{N} \& m, n, k > 0 \& m = n\} \cap \{a^n b^m c^k \mid m, n, k \in \mathbb{N} \& m, n, k > 0 \& n = k\}$ regular? (2pt)

- **A YES**
- **B NO**

Let $G = \{N, \{a, b, c\}, P, S\}$ be the context-free grammar with

$$P = \{(S, aSc), (S, S'), (S', bS'c), (S', S), (S', \epsilon)\}$$

Answer the following 3 questions:

Question 27
Is $L(G) = \{wc^n \mid n \in \mathbb{N} \& w \in L(a+b)^* \& |w| = n\}$? (2pt)

- **YES**
- **B NO**

Question 28
Is $\{a^n b^m c^k \mid m, n, k \in \mathbb{N} \& n + m = k\} \subseteq L(G)$? (2pt)

- **YES**
- **B NO**

Question 29
Is $L(G) \subseteq \{a^n b^m c^k \mid m, n, k \in \mathbb{N} \& n + m = k\}$? (2pt)

- **A YES**
- **B NO**

End of this group.
Corrected

ANSWER SHEET

Enter your registration id on the left boxes and write your first name and last name below.

Firstname and lastname:

.....................

Answers must be given exclusively on this sheet: answers given on the other sheets will be ignored. Please fill completely with your pen the box of the answer you want to select (ticking it or crossing it is not enough).

Question 1: ■ B
Question 2: A ■
Question 3: ■ B
Question 4: ■ B
Question 5: ■ B
Question 6: A ■
Question 7: A ■
Question 8: A ■
Question 9: A ■
Question 10: A ■
Question 11: ■ B
Question 12: A ■
Question 13: ■ B
Question 14: ■ B
Question 15: ■ B
Question 16: A ■
Question 17: ■ B
Question 18: ■ B
Question 19: A ■
Question 20: A ■
Question 21: A ■
Question 22: ■ B
Question 23: A ■
Question 24: ■ B
Question 25: A ■
Question 26: A ■
Question 27: ■ B
Question 28: ■ B
Question 29: A ■