Learning Outcomes

By the end of this session you should be able to...

- define regular expressions (RegExpr)
- build an NFA accepting the same language of a RegExpr
Regular expressions, I

Given \(\Sigma \), the set of regular expressions is defined inductively.

Base cases:

- **Every** \(\sigma \in \Sigma \) is a regular expression
 - \(L(\sigma) \overset{\text{def}}{=} \{ \sigma \} \)
- \(\epsilon \) is a reg. exp.
 - \(L(\epsilon) \overset{\text{def}}{=} \{ \epsilon \} \)
- \(\emptyset \) is a reg. exp.
 - \(L(\emptyset) \overset{\text{def}}{=} \emptyset \)
Regular expressions, II

Operations:

- If α, β are reg. exp. then $\alpha + \beta$ is a reg. exp.

 - $L(\alpha + \beta) \overset{\text{def}}{=} L(\alpha) \cup L(\beta)$

 - some authors write $\alpha | \beta$ instead of $\alpha + \beta$

- If α, β are regular expressions then $\alpha \beta$ is a regular expression

 - $L(\alpha \beta) \overset{\text{def}}{=} L(\alpha)L(\beta)$

- If α is a regular expression then α^* is a regular expression

 - $L(\alpha^*) \overset{\text{def}}{=} L(\alpha)^*$
Examples

- We say that a string s matches a regular expression α whenever $s \in L(\alpha)$.
 - no strings match \emptyset (since $L(\emptyset) = \emptyset$);
 - strings that end in b match $(a + b)^*b$;
 - $L((a + b)^*b) = L((a + b)^*)L(b) = L(a + b)^*L(b)$
 $$= (L(a) \cup L(b))^*\{b\} = \{a, b\}^*\{b\}$$
 $$= \{x_1 \ldots x_ny \mid n \in \mathbb{N}, x_i \in \{a, b\}, y \in \{b\}\}$$
 - strings of even length match $((a + b)(a + b))^*$;
 - $abba$ and the empty string match $abba + \epsilon$;
Kleene’s Theorem

Theorem.

- If α is a regexp then $L(\alpha)$ is a regular language
- If L is a regular language then $L = L(\alpha)$ for some regexp α

- In other words, finite automata and regular expressions describe the same languages!
Proving Kleene’s Theorem

• We know that DFAs, NFAs and εNFAs accept precisely the regular languages;

• To prove Kleene’s theorem we will:
 1. show how to convert a regular expression to a εNFA;
 2. show how to convert any NFA to a regular expression
Reg exp to finite automaton

• The set of regular expressions is built inductively:
 o $\sigma \in \Sigma$, ϵ and \emptyset are the base cases;
 o $+$, \cdot and $-\ast$ are the operations.

• So to prove that $\forall \alpha. L(\alpha)$ is regular we need to prove that:
 o $L(\sigma)$, $L(\epsilon)$ and $L(\emptyset)$ are regular.
 o if $L(\alpha)$, $L(\beta)$ are regular then so is $L(\alpha + \beta)$;
 o if $L(\alpha)$, $L(\beta)$ are regular then so is $L(\alpha\beta)$;
 o if $L(\alpha)$ is regular then so is $L(\alpha^\ast)$.
Base cases

- \(L(\sigma) \) is regular;

- \(L(\epsilon) \) is regular;

- \(L(\emptyset) \) is regular;
• Want to show that $L(\alpha + \beta) \overset{\text{def}}{=} L(\alpha) \cup L(\beta)$ is regular;

• Can assume $L(\alpha)$ and $L(\beta)$ are regular;

• We’ve proved in a tutorial that regular languages are closed under union. Hence $L(\alpha + \beta)$ is regular.
Concatenation

- Want to show that $L(\alpha \beta) \overset{\text{def}}{=} L(\alpha)L(\beta)$ is regular;
- Can assume $L(\alpha)$ and $L(\beta)$ are regular;
- Let M_1 and M_2 be NFAs for $L(\alpha)$ and $L(\beta)$ respectively. We construct a new ϵNFA M_3:

 ![Diagram](image)

 - as final states of M_3 take those of M_2. It is easy to show that $L(M_3) = L(M_1)L(M_2) = L(\alpha)L(\beta)$.
Kleene star

• Want to show that $L(\alpha^*)$ is regular;
• Can assume $L(\alpha)$ is regular;
• Let M be an NFA for $L(\alpha)$. We construct a new ϵNFA M':

![Diagram of NFA]

• as final states of M' take the singleton $\{0\}$. It is easy to show that

$$L(M') = L(M)^* = L(\alpha)^* = L(\alpha^*).$$
Reg exp to finite automaton (recap)

• The set of regular expressions is built inductively:
 o $\sigma \in \Sigma$, ϵ and \emptyset are the base cases;
 o $+$, \cdot and $-\ast$ are the operations.

• So to prove that $\forall \alpha. L(\alpha)$ is regular we have shown that:
 o $L(\sigma)$, $L(\epsilon)$ and $L(\emptyset)$ are regular.
 o if $L(\alpha)$, $L(\beta)$ are regular then so is $L(\alpha + \beta)$;
 o if $L(\alpha)$, $L(\beta)$ are regular then so is $L(\alpha\beta)$;
 o if $L(\alpha)$ is regular then so is $L(\alpha^\ast)$.
Learning Outcomes

You should be able to . . .

• . . . *define* regular expressions (RegExpr)

• . . . *build* an NFA accepting the same language of a RegExpr