COMP2210: Theory of Computation

Lecture 4

Kleene’s Theorem (continuation)

Gennaro Parlato
Learning Outcomes

By the end of this session you should be able to...

• . . . build an NFA from a regular expression
Given Σ, the set of regular expressions is defined inductively.

Base cases:

- Every $\sigma \in \Sigma$ is a regular expression
 - $L(\sigma) \overset{\text{def}}{=} \{\sigma\}$
- ϵ is a reg. exp.
 - $L(\epsilon) \overset{\text{def}}{=} \{\epsilon\}$
- \emptyset is a reg. exp.
 - $L(\emptyset) \overset{\text{def}}{=} \emptyset$
Regular expressions, II (recall)

Operations:

- If α, β are regular expressions then $\alpha + \beta$ is a regular expression.
 - $L(\alpha + \beta) \overset{\text{def}}{=} L(\alpha) \cup L(\beta)$
 - Some authors write $\alpha | \beta$ instead of $\alpha + \beta$

- If α, β are regular expressions then $\alpha\beta$ is a regular expression.
 - $L(\alpha\beta) \overset{\text{def}}{=} L(\alpha)L(\beta)$

- If α is a regular expression then α^* is a regular expression.
 - $L(\alpha^*) \overset{\text{def}}{=} L(\alpha)^*$
Examples (recall)

- We say that a string s matches a regular expression α whenever $s \in L(\alpha)$.
 - no strings match \emptyset (since $L(\emptyset) = \emptyset$);
 - strings that end in b match $(a + b)^*b$;

$$L((a + b)^*b) = L((a + b)^*)L(b) = L(a + b)^*L(b)$$

$$= (L(a) \cup L(b))^*\{b\} = \{a, b\}^*\{b\}$$

$$= \{x_1 \ldots x_n y \mid n \in \mathbb{N}, x_i \in \{a, b\}, y \in \{b\}\}$$

- strings of even length match $((a + b)(a + b))^*$;
- $abba$ and the empty string match $abba + \epsilon$;
Kleene’s Theorem

Theorem.

• If α is a regexp then $L(\alpha)$ is a regular language (last lecture)

• If L is a regular language then $L = L(\alpha)$ for some regexp α (today)

• In other words, finite automata and regular expressions describe the same languages!
NFA to reg exp

- Let $M = (Q, \Sigma, \Delta, s, F)$ be an NFA. We will first define a regular expression $\alpha_{u,v}^X$ for any $X \subseteq Q$ and $u, v \in Q$.

- $\alpha_{u,v}^X$ is a regular expression that describes all possible paths from u to v that start with u, end with v and have all the intermediate states in X.

- We will define $\alpha_{u,v}^X$ by recursion on X: first let us define formally what the previous point means formally.
NFA to reg exp

- For $X \subseteq Q$ let $q \xrightarrow{\sigma}^X q'$ be shorthand for $\delta(q, \sigma) = q'$;
- We extend the \rightarrow^X notation to arbitrary strings:

$$q \xrightarrow{\epsilon}^X q' \overset{\text{def}}{=} q = q'$$

$$q \xrightarrow{x\sigma}^X q' \overset{\text{def}}{=} \exists q'' \in X. q \xrightarrow{x}^X q'' \land q'' \xrightarrow{\sigma}^X q'$$

- Clearly $q \xrightarrow{x} q'$ is the same as $q \xrightarrow{\cdot}^Q q'$;

Idea: We want $L(\alpha_{u,v}^X) = \{x \mid u \xrightarrow{x}^X v\}$.
Definition of $\alpha_{u,v}^\varnothing$

- we begin with the base case of $X = \varnothing$. Let a_1, \ldots, a_k be all the symbols such that $\delta(u, a_i) = v$ for $1 \leq i \leq k$

 $u \neq v : \quad \alpha_{uv}^\varnothing \overset{\text{def}}{=} \begin{cases} a_1 + \cdots + a_k & \text{if } k > 0 \\ \varnothing & \text{otherwise} \end{cases}$

 $u = v : \quad \alpha_{uv}^\varnothing \overset{\text{def}}{=} \begin{cases} a_1 + \cdots + a_k + \epsilon & \text{if } k > 0 \\ \epsilon & \text{otherwise} \end{cases}$

- Inductive step: we know $\alpha_{u,v}^X$, how can we define $\alpha_{u,v}^{X+\{q\}}$?
Inductive step

- **Idea:** a path from u to v in $X + \{q\}$ goes through q k-times for some k...

- $\alpha^X_{u,v}$ - paths that don’t go through q;

- $\alpha^X_{u,q}\alpha^X_{q,v}$ - paths that go through q once;

- $\alpha^X_{u,q}\alpha^X_{q,q}\alpha^X_{q,v}$ - paths that go through q twice...
Definition of $\alpha_{u,v}^{X+\{q\}}$

$$
\alpha_{u,v}^{X+\{q\}} \overset{\text{def}}{=} \alpha_{u,v}^X + \alpha_{u,q}^X (\alpha_{q,q}^X)^* \alpha_{q,v}^X
$$
NFA to regular expression

- Suppose that $M = (Q, \Sigma, \delta, s, F)$ is a DFA. We know that:

 \[
 L(M) = \{x \mid \hat{\delta}(x) \in F\} = \{x \mid \exists f \in F. s \xrightarrow{x} Q f\}
 \]

- Let f_1, \ldots, f_k be all the states in F. Then the regular expression for $L(M)$ is

 \[
 \alpha^Q_{s, f_1} + \alpha^Q_{s, f_2} + \cdots + \alpha^Q_{s, f_k}.
 \]

- The construction works the same way for NFAs.
Example

\[\alpha_{0,1}^{\{0,1\}} = \alpha_{0,1}^0 + \alpha_{0,1}^0 \left(\alpha_{1,1}^0 \right)^* \alpha_{1,1}^0 \]
\[\alpha_{0,1}^{\{0\}} = \alpha_{0,1}^0 + \alpha_{0,0}^0 \left(\alpha_{0,0}^\emptyset \right)^* \alpha_{0,1}^0 \]
\[= b + (a + \epsilon)(a + \epsilon)^* b \ (== a^* b) \]
\[= a^* b + a^* b(\epsilon + a^* b)^* (\epsilon + a^* b) \]
\[(== (a+b)^* b) \]

\[\alpha_{1,1}^{\{0\}} = \alpha_{1,1}^\emptyset + \alpha_{1,0}^\emptyset \left(\alpha_{0,0}^\emptyset \right)^* \alpha_{0,1}^\emptyset \]
\[= (b + \epsilon) + a(a + \epsilon)^* b \ (== \epsilon + a^* b) \]