COMP2210: Theory of Computation

Lecture 5

Limitations of regular languages

Gennaro Parlato
Learning Outcomes

By the end of this session you should be able to...

• ... *prove* the pumping Lemma
Regular Languages

- we have seen that the class of regular languages is quite robust:
 - it is the class of languages accepted by a family (DFA, NFA, ϵNFA) of finite automata, the class of languages matched by reg exp

- Q: Are all languages regular?

- A: No. Using a counting argument, there are countably ($\sim N$) many regular expressions but, in general, uncountably ($\sim 2^N$) many languages.
A non-regular language

\{ a^n b^n \mid n \in \mathbb{N} \}

- **rough idea:** any DFA has finitely many states. To accept \(a^{1000} b^{1000} \) and reject \(a^{1000} b^{999} \) it has to be able to count the number of \(a \)'s and remember how many have been seen. Since the number is unbounded, there is no way to do this with a finite number of states.
Suppose that M is an automaton that accepts $\{a^n b^n \mid n \in \mathbb{N}\}$. Suppose that M has k states. Let $n > k$. Then $\exists q \in Q$ such that:

- Then M accepts also $a^{n-l} b^n$. Contradiction!
Pumping lemma

Suppose that A is regular. There exists $k \in \mathbb{N}$ such that for all strings x, y, z with $xyz \in A$ and $\#y \geq k$:

- there exist strings u, v, w with:
 - $y = uvw$ and $v \neq \epsilon$;
 - $xuv^i wz \in A$ for all $i \geq 0$.

Proof: (Exercise) Hint: It is similar to the one on the previous slide.
Learning Outcomes

You should be able to...

- **prove** the pumping Lemma