1. Design a DFA over the alphabet \{a, b\} that accepts precisely the:

 a) strings with an even number of ‘a’s.

 Solution:

 ![Diagram](image)

 b) strings with an odd number of ‘a’s.

 Solution:

 ![Diagram](image)

 c) strings with number of ‘a’s divisible by 3.

 Solution:

 ![Diagram](image)

 d) strings with number of ‘a’s divisible by \(n\), for some \(n \in \mathbb{N}\).
Solution: You can’t divide by 0 so the problem is not well-defined for 0. For natural numbers $n > 0$ let M be an automaton with statespace $Q = \{0, 1, \ldots, n - 1\}$ so that:

- each state has a self-loop labelled b
- for each $k < n$, there is an a-labelled transition from state k to state $(k + 1) \mod n$
- 0 is the initial state and the only final state.

I claim that this works. Can you think of a proof?

2. a) Given a DFA M, how can we obtain a DFA M' such that M' accepts exactly those strings that are rejected by M? (Hint: think about the solutions to a) and b) in the previous question)

Solution: We swap the final and the non-final states. Formally, if $M = (Q, \Sigma, \delta, s, F)$ we let $M' \overset{\text{def}}{=} (Q, \Sigma, \delta, s, F')$ where $F' \overset{\text{def}}{=} Q - F = \{q \in Q | q \notin F\}$. Recall that, by definition, $x \in L(M)$ if and only if $s \xrightarrow{x} q$ and $q \in F$. So

$$x \in L(M') \iff s \xrightarrow{x} q \text{ and } q \in F' \iff s \xrightarrow{x} q \text{ and } q \notin F \iff x \notin L(M)$$

b) Prove that the class of regular languages is closed under complement. That is, if L is a regular language then so is $\sim L = \{x \in \Sigma^* | x \notin L\}$.

Solution: Suppose that L is regular. Then there is a DFA M that accepts it. Let M' be the DFA obtained by swapping final and non-final states, as done in the previous solution. Then $L(M') = \{x \in \Sigma^* | x \notin L(M)\} = \{x \in \Sigma^* | x \notin L\} = \sim L$, thus $\sim L$ is a regular language.

3. Prove the following:

a) \emptyset and Σ^* are regular languages.
Solution: Any DFA with an empty set of accepting states accepts the empty language. Thus, \emptyset is regular. An automaton with only one state, say s, which is both initial and final, and with a transition of the form (s, a, s) for every $a \in \Sigma$ will accept Σ^*.

b) if L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.

Solution: If L_1 and L_2 are regular, then by definition there must be two DFAs M_1 and M_2 such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. W.l.o.g., assume that the set of states of M_1 and M_2 are disjoint. Then, we can build a new automaton, say M, that has M_1 and M_2 as subcomponents and a fresh initial state s that has an ϵ-move to the initial state of M_1 and M_2, respectively. It is easy to see that every path in M, except for the first transition, is also a path in one of the two automata. Thus, $L(M) = L_1 \cup L_2$. We can conclude that $L_1 \cup L_2$ is regular.

An alternative proof consists in building the cross product of M_1 and M_2 by picking $(Q_1 \times F_2) \cup (F_1 \times Q_2)$ as the set of final states, where Q_i and F_i are respectively, the set of states and the set of final states of M_i, for $i \in \{1, 2\}$. (Provide a proof of this statement) Note that, the same construction does not work if either M_1 or M_2 is an NFA. (Why?)

c) If L_1 and L_2 are regular then $L_1 \cap L_2$ is regular.

Solution: If L_1 and L_2 are regular, then by definition there must be two DFAs M_1 and M_2 such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. Assume that F_i is the set of final states of M_i, for $i \in \{1, 2\}$. It should be straightforward to see that the cross product of M_1 and M_2 with set of final states $F_1 \times F_2$ is an automaton that recognises $L_1 \cap L_2$. (Why?) Note that, the same construction does not work if either M_1 or M_2 is an NFA. (Why?)

d) if L_1 and L_2 are regular then $L_1 L_2 = \{xy | x \in L_1, y \in L_2\}$ is regular.

Solution: If L_1 and L_2 are regular, then by definition there must exist two DFAs M_1 and M_2 such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$.

Assume that \(s_i \) is the initial state of \(M_i \), and \(F_i \) is the set of final states of \(M_i \), for \(i \in \{1, 2\} \).

We can built an \(\epsilon \)NFA \(M \) that accepts \(L_1L_2 \) as follows. We assume w.l.o.g. that the sets of states of \(M_1 \) and \(M_2 \) are disjoint. We can build \(M \) by composing \(M_1 \) and \(M_2 \) as follows: (1) the initial state of \(M \) is \(s_1 \), (2) we add an \(\epsilon \)-move from each final state in \(F_1 \) to \(s_2 \), and (3) the set of final states of \(M \) is \(F_2 \). Prove that \(M \) accepts \(L_1L_2 \).

Note that, the construction still works if \(M_i \) is either a DFA or an NFA or an \(\epsilon \)NFA.

e) If \(L \) is regular then \(L^* = \{ x_1 \ldots x_k \mid k \in \mathbb{N}, x_i \in L \} \) is regular

Solution: If \(L \) is regular, then by definition there must exist a DFAs \(M \) such that \(L = L(M) \). Assume that \(s \) is the initial state of \(M \), and \(F \) is the set of final states of \(M \).

We can built an \(\epsilon \)NFA \(M' \) that accepts \(L^* \) as follows. \(M' \) is the same as \(M \) with the difference that there is an \(\epsilon \)-move from each final state in \(F \) to \(s \), and (2) the set of \(M' \) final states is \(F \cup \{s\} \). Prove that \(M' \) accepts \(L^* \).

Note that, the construction still works if \(M \) is either a DFA or an NFA or an \(\epsilon \)NFA.

4. Suppose that \(M = (Q, \Sigma, \delta_M, s, F) \) is a DFA. Define \(\delta_M: \Sigma^* \rightarrow Q \) recursively as follows:

\[
\hat{\delta}_M(\epsilon) \stackrel{\text{def}}{=} s, \quad \hat{\delta}_M(x\sigma) \stackrel{\text{def}}{=} \delta_M(\hat{\delta}_M(x), \sigma)
\]

(a) Prove that \(x \in L(M) \) if and only if \(\hat{\delta}_M(x) \in F \);

Solution: We first prove that \(s \xrightarrow{\epsilon} \hat{\delta}_M(x) \). We can do this by induction on \(x \). For the base case \(x = \epsilon \) and by definition \(\hat{\delta}_M(\epsilon) = s \) and, again by definition, \(s \xrightarrow{\epsilon} s \), so the claim holds for the base case. Now the inductive step is: assume that for some \(x \in \Sigma^* \) we have that \(s \xrightarrow{x} \hat{\delta}_M(x) \), now \(\hat{\delta}_M(x\sigma) = \delta_M(\hat{\delta}_M(x), \sigma) \). By the inductive hypothesis \(s \xrightarrow{\epsilon} \hat{\delta}_M(x) \) and \(\hat{\delta}_M(x) \xrightarrow{\sigma} \hat{\delta}_M(x\sigma) \) so \(s \xrightarrow{\epsilon} \hat{\delta}_M(x\sigma) \) as required.
Using what we have just proved, if \(\hat{\delta}_M(x) \in F \) then \(s \xrightarrow{x} \hat{\delta}_M(x) \) and \(\hat{\delta}_M(x) \) is a final state, so \(x \in L(M) \).

To prove the converse (if \(x \in L(M) \) then \(\hat{\delta}_M(x) \in F \)), we first need to show that if \(s \xrightarrow{x} q \) and \(s \xrightarrow{x} q' \) then \(q = q' \). Again, we can do this by induction on \(x \), and this is left as an exercise for you. Once we have established this, if \(x \in L(M) \) then there exists \(q \in F \) such that \(s \xrightarrow{x} q \). Now also \(s \xrightarrow{x} \hat{\delta}_M(x) \) and so, by the exercise, \(\hat{\delta}_M(x) = q \). This completes the proof.

(b) Suppose that \(M_1 \) and \(M_2 \) are DFAs and \(N = M_1 \times M_2 \). Prove that for any \(x \in \Sigma^* \) we have

\[
\hat{\delta}_N(x) = (\hat{\delta}_{M_1}(x), \hat{\delta}_{M_2}(x)).
\]

Solution: Induction on \(x \). For \(x = \epsilon \), \(\hat{\delta}_N(x) = s_N = (s_{M_1}, s_{M_2}) \) by the definition of the product construction, and \((\hat{\delta}_{M_1}(x), \hat{\delta}_{M_2}(x)) = (s_{M_1}, s_{M_2}) \). For the inductive step,

\[
\begin{align*}
\hat{\delta}_N(x \sigma) &= \hat{\delta}_N(\hat{\delta}_N(x), \sigma) \quad \text{(Definition of } \hat{\delta}_N) \\
&= \hat{\delta}_N((\hat{\delta}_{M_1}(x), \hat{\delta}_{M_2}(x)), \sigma) \quad \text{(Inductive hypothesis)} \\
&= (\delta_{M_1}(\hat{\delta}_{M_1}(x), \sigma), \delta_{M_2}(\hat{\delta}_{M_2}(x), \sigma)) \quad \text{(Definition of } \delta \text{ in product construction)} \\
&= (\hat{\delta}_{M_1}(x \sigma), \hat{\delta}_{M_2}(x \sigma)) \quad \text{(Definitions of } \hat{\delta}_{M_1}, \hat{\delta}_{M_2})
\end{align*}
\]

(c) Use (1) to prove that \(L(N) = L(M_1) \cap L(M_2) \).

Solution: All the hard work has now been done.

\[
x \in L(N) \iff \hat{\delta}_N(x) \in F_N \quad \text{(By (a))}
\]
\[
\iff \hat{\delta}_N(x) \in F_{M_1} \times F_{M_2} \quad \text{(Defn. of final states in prod. constr.))}
\]
\[
\iff (\hat{\delta}_{M_1}(x), \hat{\delta}_{M_2}(x)) \in F_{M_1} \times F_{M_2} \quad \text{(By (b))}
\]
\[
\iff \hat{\delta}_{M_1}(x) \in F_{M_1} \text{ and } \hat{\delta}_{M_2}(x) \in F_{M_2} \quad \text{(Defn. of cartesian product)}
\]
\[
\iff x \in L(M_1) \text{ and } x \in L(M_2) \quad \text{(By (a))}
\]
\[
\iff x \in L(M_1) \cap L(M_2)
\]