1. Use the pumping lemma to show that the language of all words over the alphabet \{0, 1\} containing the same number of 0’s and 1’s is not regular.

2. Given a language L over an alphabet A, the complement of L w.r.t. A is defined to be all words over A that are not members of L. The reverse of a language is the set of words which, if their letters were reversed, would give words in L.
 (a) Prove that if L is a regular language then the complement of L is also regular.
 (b) Prove that if L is a regular language then so is the reverse of L.

3. Use the pumping lemma to show that any finite language is regular.

4. Construct a pushdown automaton that accepts (by final state) the set of strings in \{a, b\}∗ that have an equal number of a’s and b’s ($\{x \mid \#a(x) = \#b(x)\}$). Specify all the transitions. Simulate your automaton on ϵ, $aaba$ and $abba$.

5. Given two PDAs, say P_1 and P_2, construct a PDA P that accepts $L(P_1) \cup L(P_2)$.

6. Given a PDA A (that accepts by final states), construct a PDA that accepts $L(A)^*$.

7. Consider the following context-free grammar G:

 \[
 \begin{align*}
 S & \rightarrow ABS \mid AB \\
 A & \rightarrow aA \mid a \\
 B & \rightarrow bA
 \end{align*}
 \]

 Which of the followings strings are in $L(G)$ and which are not? Provide derivations for those that are in $L(G)$. Explain the reasons for the strings that are not in $L(G)$.

 a) $aabaab$
 b) $aaaaba$
 c) $aabbba$
 d) $abaaba$

8. Define a CFG G such that $L(G) = L(M)$ for any given DFA M.

9. Give a grammar with no ϵ- or unit productions that generates the set $L(G) - \{\epsilon\}$ where G is the grammar:

 \[
 \begin{align*}
 S & \rightarrow aSbb \mid T \\
 T & \rightarrow bTaa \mid S \mid \epsilon
 \end{align*}
 \]