COMP 3206: Machine Learning
Linear Algebra Background

Srinandan Dasmahapatra

2017/8
From sets to vectors

- A vector space is a set with additional structure.
- The structure allows you to:
 - multiply elements by scalars and
 - add elements together
 to get other elements of the set.
- Impose transformation rules on all elements – linear transformations.
- Discover hidden parts/patterns in collections.
Matrix representation of associations: storage and access

- Information storage matrix is A may be viewed as a map from space of users to space of movies.

 \[
 A : \mathcal{U} \rightarrow \mathcal{V} \\
 A_{uv} = \begin{cases}
 1 & \text{if } (u, v) \text{ connected} \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Retrieval of information is by matrix-vector operations.
Matrix representation of associations: storage and access

- Data as matrix
 \[
 A = \begin{pmatrix}
 0 & 1 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 & 1 \\
 1 & 0 & 0 & 1 & 0
 \end{pmatrix}
 \]

- Information retrieval by matrix-vector ops

- Given: preferences of 3 subscribers to Netflix, predict: what movies would this new user rent?
Represent elements of sets as vectors

\[\hat{\mathbf{u}}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{\mathbf{u}}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{\mathbf{u}}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \]

\[\hat{\mathbf{v}}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \hat{\mathbf{v}}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \hat{\mathbf{v}}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \hat{\mathbf{v}}_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \hat{\mathbf{v}}_5 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \]

- Retrieval: movie preferences of k-th user $\hat{\mathbf{u}}_k$ obtained by performing $\mathbf{A}^T \hat{\mathbf{e}}_k$
Retrieval of information by matrix-vector multiplication

For user 2,

\[A^T \hat{u}_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \]

\[A^T \hat{u}_2 = \hat{v}_3 + \hat{v}_5 \]
Information Retrieval, Lexical Semantics: meaning of word determined by company it keeps

- \mathcal{D}, a collection of documents $d_j \in \mathcal{D}$, $j = 1, \ldots, n = |\mathcal{D}|$.
- \mathcal{W}, the vocabulary, i.e. all the words $w_i \in \mathcal{W}$ contained in \mathcal{D}, $i = 1, \ldots, m = |\mathcal{W}|$
- Construct $(m \times n)$ matrix \mathcal{T} with entries $(\mathcal{T})_{ij} = t_{ij}$, where t_{ij} counts the number of times word w_i appears in document d_j:

$$
\mathcal{T} = \left(\begin{array}{c|c|c|c|c|c}
\mathbf{d}_1 & \cdots & \mathbf{d}_n \\
\end{array} \right) = \left(\begin{array}{c|c|c}
\mathbf{w}_1 & \cdots & \\
\mathbf{w}_m & \\
\end{array} \right)
$$

- Column view – document retrieval (library catalogue)
- Row view – lexical semantics (distributional similarity): if 2 words a, b appear in same documents, they are similar: w_a close to w_b.
Representing images as vectors

\[x = (x_{11}, x_{12}, \ldots, x_{LL})^T = (x(1), x(2), \ldots, x(D))^T. \]
Matrices

You should all know the following

- Matrix notation
- Matrix transpose
- Scalar multiplication
- Matrix addition & multiplication
- Matrix inverse
- System of linear equations in matrix form
- Matrix determinant
Reminder: Solving Linear Equations – Geometrical Picture

- Solve set of equations:

\[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
=
\begin{pmatrix}
 r \\
 s
\end{pmatrix}
\]

- Geometrically viewed as intersection of linear linear combination of vectors:

\[
\text{rows of matrix} \quad \begin{align*}
 ax + by &= r \\
 cx + dy &= s
\end{align*}
\quad \leftrightarrow \quad \begin{align*}
 x \begin{pmatrix}
 a \\
 c
 \end{pmatrix} + y \begin{pmatrix}
 b \\
 d
 \end{pmatrix} &= \begin{pmatrix}
 r \\
 s
 \end{pmatrix}
\end{align*}
\]
The Geometrical Picture: An example

- Solve set of equations:

\[
\begin{pmatrix}
-2 & 1 \\
-1 & 3
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
4 \\
-2
\end{pmatrix}
\]

red vectors are columns of matrix

Solution of \(y - 2x = 4, 3y - x = -2\), is \((x, y) = (-2.8, -1.6)\).
Fundamental operations on vectors – multiply by scalars and perform addition

Multiply red vectors by numbers (elements of a field) and add vectors together

- For **linear regression**: find linear combination of columns of design matrix to get vector closest to output
Examples of vector spaces

- Add vectors \((1.0, -2.0) + (3.0, 4.0) = (4.0, 2.0)\), where the entries are in this case real.
- Multiply vectors by numbers (scalars)
 \(3.2(1.0, -3.0) = (3.2, -9.6)\)
- For any field \(\mathbb{F}\) (such as the reals \(\mathbb{R}\) or complex numbers \(\mathbb{C}\), \(\mathbb{F}\)-valued \(n\)-tuples

\[
\mathbb{F}^n = \{ (a_1, \ldots, a_n) | a_i \in \mathbb{F}, i = 1, \ldots, n \}
\]

form a vector space; \(\mathbb{R}\)-valued 3-tuples such as
\(v_1 = (-1.2, 2.0, 5.5)\) locate points in 3D. Written as rows or columns \(v_1^T = \begin{pmatrix} -1.2 \\ 2.0 \\ 5.5 \end{pmatrix} \).
Matrices form a vector space: you can multiply $n \times m$ matrices A over \mathbb{F} with entries $a_{ij} \in \mathbb{F}$, $i = 1, \ldots, n$, $j = 1, \ldots, m$ by scalars and add any two such matrices together:

$$3 \begin{pmatrix} -2 & 1 \\ -1 & 4 \end{pmatrix} - 2 \begin{pmatrix} 2 & 2 \\ -1 & 6 \end{pmatrix} = \begin{pmatrix} -10 & -1 \\ -1 & 0 \end{pmatrix}.$$
Functions constitute vector spaces

- \(\mathbb{F}[x] \), the space of polynomials \(\sum_m a_m x^m \), where \(a_m \in \mathbb{F} \) forms a vector space:

\[
(a_0 + a_1 x + a_2 x^2) + (b_0 + b_1 x) = (a_0 + b_0) + (a_1 + b_1)x + a_2 x^2
\]

\[
=: (c_0 + c_1 x + c_2 x^2).
\]

Monomials as basis elements:

\[
(a_0, a_1, a_2) + (b_0, b_1, 0) = (a_0 + b_0, a_1 + b_1, a_2)
\]

- Similarly, the set \(\mathbb{F}[x_1, \ldots, x_k] \) of polynomials in \(k \) variables forms a vector space.
- Set of functions of the form \(\sum_{|n|<N} a_ne^{in\theta} \) (Fourier series).
- Extension – replace sums (where the summation index is from a discrete set) by integrals (where the index being summed over is now continuous)
A vector space V over a field \mathbb{F} is a collection of objects (vectors) upon which two operations can be performed – addition amongst the vectors, and multiplication by elements of the field \mathbb{F} (scalars). Upon addition of any two vectors $\mathbf{v}_1 \in V, \mathbf{v}_2 \in V$, the resulting vector $\mathbf{v}_1 + \mathbf{v}_2$ must also belong to V (closure). The binary product for $a \in \mathbb{F}$ (scalar) and $\mathbf{v} \in V$ (vector)

$$m : \mathbb{F} \times V \to V$$

$$m(a, \mathbf{v}) \mapsto a\mathbf{v}$$

is defined, and satisfies

1. $1\mathbf{v} = \mathbf{v}$, $1 \in \mathbb{F}$, $\mathbf{v} \in V$
2. $(ab)\mathbf{v} = a(b\mathbf{v})$, $a, b \in \mathbb{F}$, $\mathbf{v} \in V$
3. $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$ and $a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$, $a, b \in \mathbb{F}$, $\mathbf{v}, \mathbf{w} \in V$
On notation:

$A \times B$ is the Cartesian product of the sets A and B. This means that, for example, if $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$, then

$A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\}$

In the definition of m, the symbol \rightarrow refers to the map between the sets, while \mapsto takes a particular pair from $\mathbb{F} \times V$ to produce an output vector from V.
Reminder: Linear combination and dependence

Linear combination of vectors: \(\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{v}_i, \ \alpha_i \in \mathbb{F}, \mathbf{v}_i \in V. \)

- The vectors in the figure are linear combinations of \(\mathbf{e}_1 = (1,0) \) and \(\mathbf{e}_2 = (0,1) \). They are in the span of \(\{\mathbf{e}_1, \mathbf{e}_2\} \).
- \(\mathbf{v} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 = \binom{a_1}{a_2} \) can be zero iff \(a_1 = 0 = a_2 \).
A set of vectors v_1, v_2, \ldots, v_n are called **linearly independent** if none of them can be represented as a linear combination of the others:

$$v_k \neq \sum_{i \neq k} c_i v_i, \quad \text{for any } c_i \in \mathbb{F}$$

Equivalently, condition for a set of vectors $\{v_i\}_i$ to be linearly independent:

If $\sum_{i=1}^{n} \alpha_i v_i = 0$, then $\alpha_i = 0$ for all i

A **basis** for V is a set $B \subset V$ which is both spanning and independent. A finite dimensional vector space has a finite basis, and its dimension $\dim V$ is the number of elements in B.

Reminder: Linear independence & Basis
Dot Products, Orthogonality and Norms

- We can associate, with two vectors \mathbf{v} and \mathbf{w} an element of F called their **scalar** (or **dot**) **product**:

 $$\text{dot} : V \times V \rightarrow F$$

 $$\text{dot}(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} \rightarrow a$$

- Two vectors \mathbf{v}_1 and \mathbf{v}_2 are called **orthogonal** if their dot product is zero, i.e. $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$. If k vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are mutually orthogonal, i.e. $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for $i \neq j$, they are called an **orthogonal set**.

- Euclidean norm: for $\mathbf{v} \in V$, dim $V = N$,

 $$\| \mathbf{v} \|_2 := \sqrt{\mathbf{v}^T \mathbf{v}} = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2 + \cdots + \mathbf{v}_N^2} = |\mathbf{v}|$$

- If all vectors are of unit length $|\mathbf{v}_i| = 1$, the set is called **orthonormal**.
Using dot products to introduce projections

- **Project** a vector \(\mathbf{y} \) on a direction given by a vector \(\mathbf{u} \)

![Diagram of vector projection]

- The **projection** is given by the value \(w \) (length \(\overrightarrow{0w} \)). Note, \(w \) could be negative if \(\alpha \) is bigger than \(90^\circ \). From the figure, we see that

\[
w = |\mathbf{y}| \cos \alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{|\mathbf{u}|},
\]

because the **dot product** is \(\mathbf{y} \cdot \mathbf{u} = |\mathbf{u}| |\mathbf{y}| \cos \alpha \).
Expanding a vector in a set of orthogonal vectors – an example

Let $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. We would like to expand $v = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$ as a linear combination of the set $\{e_i\}$, i.e. we would like to find numbers α_1, α_2 such that

$$v = \sum_{i=1}^{n} \alpha_i e_i$$ \hspace{1cm} (1)

Solution: Multiply v by e_j and use the orthogonality ($e_1 \cdot e_2 = 0$): $e_1 \cdot \begin{pmatrix} -5 \\ 3 \end{pmatrix} = -5$, $e_2 \cdot \begin{pmatrix} -5 \\ 3 \end{pmatrix} = 3$.

$$\begin{pmatrix} -5 \\ 3 \end{pmatrix} = (-5) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + (3) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
Expanding a vector in a set of orthogonal vectors

Suppose v_1, v_2, \ldots, v_n are an orthogonal set of $n \times 1$ column vectors and v an arbitrary $n \times 1$ column vector. We would like to expand v as a linear combination of the set $\{v_i\}$, i.e. we would like to find numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that

$$ v = \sum_{i=1}^{n} \alpha_i v_i. \quad (2) $$

Solution: Multiply by v_j and use the orthogonality to get

$$ v_j \cdot v = \alpha_1 v_j \cdot v_1 + \cdots + \alpha_j v_j \cdot v_j + \cdots + \alpha_n v_j \cdot v_n $$

$$ = \alpha_j v_j \cdot v_j $$

Hence

$$ \alpha_j = \frac{v_j \cdot v}{v_j \cdot v_j} = \frac{v_j \cdot v}{|v_j|^2} \quad (3) $$

Orthonormal bases (where all basis vectors have length 1) are very useful.
Linear mappings between vector spaces

- For V, W vector spaces over \mathbb{F}, a map $T : V \rightarrow W$ is **linear** if for all vectors $v_i \in V$ and scalars $a_i \in \mathbb{F}$,

 $$T(a_1 v_1 + a_2 v_2) = a_1 T v_1 + a_2 T v_2.$$

- Example (derivative): $T \equiv \left(\frac{d}{dx} \right)$

 $$\left(\frac{d}{dx} \right)(af(x) + bg(x)) = a\left(\frac{d}{dx} \right)f(x) + b\left(\frac{d}{dx} \right)g(x)$$

- Example (verify):

 $$T : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mapsto \begin{pmatrix} 5x_1 - x_2 \\ x_1 + x_2 \\ x_1 - x_2 \end{pmatrix} \in \mathbb{R}^3$$

- **Hint:** Let $v_1 = (x_1, x_2)^T$ and $v_2 = (y_1, y_2)^T$. Thus,

 $$a_1 v_2 + a_2 v_2 = (a_1 x_1 + a_2 y_1, a_1 x_2 + a_2 y_2)^T.$$
For V, W vector spaces over \mathbb{F}, a map $T : V \rightarrow W$ is \textbf{linear} if for all vectors $v_i \in V$ and scalars $a_i \in \mathbb{F}$,

$$T(a_1 v_1 + a_2 v_2) = a_1 T v_1 + a_2 T v_2.$$

By induction, this extends over any (finite) sum of vectors.

Thus, a linear map from V to W is completely defined by values it assigns to basis elements of V, and these values can be arbitrary vectors in W.

$$T : x_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \cdots ?$$
Linear mappings as matrices

- For V, W vector spaces over \mathbb{F} with bases $\{v_1, \ldots, v_q\}$ and $\{w_1, \ldots, w_p\}$, a map $T : V \to W$ is completely specified by scalars $a_{ij} \in \mathbb{F}$, $(i = 1, \ldots, p, j = 1, \ldots, q)$, such that

$$T v_j = \sum_{i=1}^{p} a_{ij} w_i.$$

Let $x \in \mathbb{F}^q$ with components x_1, \ldots, x_q, $y \in \mathbb{F}^p$ with components y_1, \ldots, y_p. Then, $T x$ becomes

$$T \left(\sum_{j=1}^{q} x_j v_j \right) = \sum_{i=1}^{p} \left(\sum_{j=1}^{q} x_j a_{ij} \right) w_i = \sum_{i=1}^{p} y_i w_i \iff T_A x = y$$

- The entries $a_{ij} \in \mathbb{F}^{p \times q}$ are determined by the action of T on the basis vectors.
Thus $A\mathbf{x} = \mathbf{y}$ can be solved if and only if \mathbf{y} is a linear combination of columns of A.

- The column space of a matrix A (denoted $\text{col } A$) is the subspace spanned by all linear combinations of the columns of A.
- This is also the range of the linear map: $\text{range}(A) = AV = \{\mathbf{w} \in \mathcal{W} : \mathbf{w} = A\mathbf{v} \text{ for some } \mathbf{v} \in \mathcal{V}\}$.
Examples illustrating linear dependence and nullspace

Let \(B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \). For vector \(\mathbf{v} \) in direction \(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \),

\[B\mathbf{v} = 0. \] \(\mathbf{v} \) in nullspace or kernel of \(B \).

For \(A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \), \(\text{col}(1) + \text{col}(2) = \text{col}(3) \), so

\[\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - 1 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \text{ker}(A) = c \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \]

Show \(\text{ker}(A^T) = c \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \).
Kernel or Null space of a matrix

- In the previous example \(A = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \), there are 3 variables \(\mathbf{v} \) in \(A\mathbf{v} = \mathbf{y} \) but only two independent equations.
- If \(A\mathbf{v} = \mathbf{y} \) and \(\mathbf{x} \in \ker(A) \) then \(A(\mathbf{v} + \mathbf{x}) = \mathbf{y} \). Either there are no solutions or there are (infinitely) many solutions.
- The kernel of a map (or matrix) \(\ker(A) = \text{nullspace } A = \{ \mathbf{v} \in V : A\mathbf{v} = 0 \} \).
- Let \(A \) be a \(3 \times q \) matrix.

\[
A = \begin{pmatrix} _ & _ & \mathbf{u} & _ \\ _ & _ & \mathbf{v} & _ \\ _ & _ & \mathbf{w} & _ \end{pmatrix},
\]

where \(\mathbf{u}, \mathbf{v} \) and \(\mathbf{w} \) are \(q \)-dim row vectors. Then, \(\mathbf{x} \in \ker(A) \Leftrightarrow A\mathbf{x} = 0 \). This means \(\mathbf{x} \perp \{ \mathbf{u}, \mathbf{v}, \mathbf{w} \} \).
Rank of a matrix = number of independent equations

- The **rank** (column rank) of A is the dimension of the column space of A.
- A vector space is partitioned into its range and null spaces:
 \[
 \dim V = \dim \ker(A) + \dim \text{range}(A).
 \]
 \[
 \underbrace{\dim \ker(A)}_{\text{nullity}} + \underbrace{\dim \text{range}(A)}_{\text{rank}}.
 \]
- We can do the same for the transpose: $\text{col}(A^T)$ and $\ker(A^T)$.
- 4 fundamental subspaces: $\text{col}(A)$, $\ker(A^T)$, $\text{col}(A^T)$ and $\ker(A^T)$.
Four fundamental subspaces of a matrix

Multiplying vectors by matrices iteratively introduces linear dependence

- Let A be a $n \times n$ (square) matrix. The multiplication of A with vectors
 \[w = Av \]
 defines a mapping (or transformation) of vectors $v \in V$ into vectors $w \in W$. For square matrix A, $V = W$.
- For $v \neq 0$, the $(n+1)$ vectors $v, Av, A^2v, \ldots A^n v$ cannot all be linearly independent if the rank of A is n.
- Therefore there must be scalars a_0, a_1, \ldots, a_n such that
 \[(a_0 I + a_1 A + \cdots + a_n A^n) v = 0, \text{ for } v \neq 0. \]
Linear dependence determines eigenvalues from matrix polynomials

- For a polynomial $f(x) = \sum_{i=0}^{n} a_i x^i$, $x \in \mathbb{F}$ define a matrix polynomial $f(A) = \sum_{i=0}^{n} a_i A^i$ where A is a square matrix.
- Therefore if $f(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$, we can express $f(A) = (A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ where I is an $n \times n$ identity matrix.
- Therefore, since

$$0 = (a_0 I + a_1 A^1 + \cdots + a_n A^n)v = (A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)v,$$

at least one of $(A - \lambda_k I)$ maps a non-zero vector in that space to 0.
- This means that $\ker(A - \lambda_k I) \neq \{0\}$ and $(A - \lambda_k I)$ is not invertible.
- $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A.
Matrix polynomials and eigenvalues: example

- For polynomials $f_1(x) = x^2 - 5x - 2$ and $f_2(x) = x^2 - 2x - 5$, compute $f_1(A)$ and $f_2(A)$ for $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$:

 - Check that $A^2 = \begin{pmatrix} 7 & 4 \\ 6 & 7 \end{pmatrix}$

 - $f_1(A) = \begin{pmatrix} 0 & -6 \\ -9 & 0 \end{pmatrix}$ and $f_2(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

 - $f_2(A)$ is the **characteristic polynomial** of A. $f_2(x) = (x - \lambda_1)(x - \lambda_2)$. $\lambda_{1,2}$ are the **eigenvalues** of the matrix A. (In this example, $\lambda_{1,2} = (1 \pm \sqrt{6})$.)

 - In general, the characteristic polynomial of a matrix A is denoted $\chi_A(x)$. So $\chi_A(x) = f_2(x)$ for this example.
Determinants and characteristic polynomials of matrices

- The **determinant** of a matrix T, denoted $\text{det}(T)$ or $|T|$ is the product of its eigenvalues.
- The characteristic polynomial $\chi_T(x)$ of a matrix T equals $\text{det}(xI - T)$.
- You should all know the Laplace expansion of $\text{det}(T)$.
- Check that $|xI - A|$ for $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ is indeed $f_2(A)$.

35 / 61
Eigenvectors: vectors \mathbf{x} whose lengths are scaled by eigenvalue λ upon action of \mathbf{A}

- The eigenvalue problem $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$: find, for a matrix \mathbf{A}, the eigenvectors \mathbf{x} and eigenvalues λ.
- Example: Find the eigenvalues and eigenvectors of

$$
\mathbf{A} = \begin{pmatrix}
1 & 1 & -2 \\
-1 & 2 & 1 \\
0 & 1 & -1
\end{pmatrix}
$$

- **STEP I:** Compute the characteristic polynomial of \mathbf{A} and find its roots:

$$
-\chi_A(\lambda) = \begin{vmatrix}
1 - \lambda & 1 & -2 \\
-1 & 2 - \lambda & 1 \\
0 & 1 & -1 - \lambda
\end{vmatrix} = (1 - \lambda)(2 - \lambda)(-1 - \lambda)
$$

$$
\chi_A(\lambda) = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = 1 \text{ and } \lambda_3 = -1.
$$
...continuing...the calculation of the eigensystem

STEP II:
For each eigenvalue, we need to compute the corresponding eigenvectors. We demonstrate this only for \(\lambda_1 = 2 \). Setting \(\lambda = 2 \), denoting the corresponding eigenvector by \(\mathbf{v}_1 = (x \ y \ z)^T \in \ker(A - \lambda_1 I) \), compute

\[
(A - 2I) \mathbf{v}_1 = \begin{pmatrix}
-1 & 1 & -2 \\
-1 & 0 & 1 \\
0 & 1 & -3
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = 0
\]

This is equivalent to the set of equations

\[
-x + y - 2z = 0 \\
-x + z = 0 \\
y - 3z = 0
\]

Solution \(\mathbf{v}_1 = c(1 \ 3 \ 1)^T \)
...continuing...(and how to find the result in python)

Often, one computes the normalized eigenvectors \hat{v}, which have unit length $|\hat{v}| = 1$. In our case,

\[
|\hat{v}_1| = \frac{v_1}{|v_1|} = \frac{v_1}{\sqrt{11}} = \frac{1}{\sqrt{11}} (1 \ 3 \ 1)^T
\]

Proceeding in a similar way with the two other eigenvalues, we get the set of eigenvectors $v_1 = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

In python (seek the online Help):

```
np.linalg.eig?
```
Example: eigenvectors of repeated eigenvalues

You may not always get distinct eigenvalues (like we did in the previous case). Let

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix}$$

(4)

Solving $\chi_A(\lambda) = 0$ gives the eigenvalues $\lambda_1 = \lambda_2 = 2$ and $\lambda_3 = 1$. For the eigenvalue λ_3 we find $v_3 = (1 \ 1 \ -1)^T$ as an eigenvector. If we set $\lambda_{1,2} = 2$ and $v_{1,2} = (x \ y \ z)^T$ the equation $(A - 2I)v_{1,2} = 0$ gives

$$-x + 2y + 2z = 0$$
$$z = 0$$
$$-x + 2y = 0$$

yielding $z = 0$ and $x = 2y$ and $v_{1,2} = (2 \ 1 \ 0)^T$. Hence, we get only two linear independent eigenvectors.
Linear independence of eigenvectors

- If matrix A has m distinct eigenvalues $\lambda_1, \ldots, \lambda_m$, then the corresponding eigenvectors v_1, \ldots, v_m are linearly independent.

Proof (by contradiction): Assume linear dependence:
$\exists a_1, \ldots, a_m$, all $a_i \neq 0$ such that $w := a_1v_1 + \cdots + a_mv_m = 0$. For $k = 1, \ldots, m$ we apply to the zero vector w the operators \tilde{A}_k defined thus (missing k-th factor):

$$\tilde{A}_k = (A - \lambda_1 I)(A - \lambda_2 I)\cdots(A - \lambda_{k-1} I)(A - \lambda_{k+1} I)\cdots(A - \lambda_m).$$

For example, for $k = 1$ we have

$$0 = \tilde{A}_1w = a_1(\lambda_1 - \lambda_2)(\lambda_1 - \lambda_3)\cdots(\lambda_1 - \lambda_m)v_1 \Rightarrow a_1 = 0.$$

Similarly, $0 = \tilde{A}_k w \Rightarrow a_k = 0$. For $w = 0$ all $a_k = 0$ necessarily. *Contradicts assumption.* □
Complex eigenvalues

Eigenvalues may not be real numbers, even if the matrix elements are real:

\[A = \begin{pmatrix} 1 & -2 \\ 2 & 0 \end{pmatrix} \]

Setting \(|A - \lambda I| = \lambda^2 - \lambda + 4 = 0\), we obtain \(\lambda_{1,2} = (1 \pm \sqrt{-15})/2 = (1 \pm i\sqrt{15})/2\) with \(i = \sqrt{-1}\.\)
Real symmetric and hermitian matrices

- A matrix \mathbf{A} is called \textit{real symmetric} if all matrix elements are real numbers and $\mathbf{A}^T = \mathbf{A}$, where \mathbf{A}^T is the transpose of \mathbf{A}.
- For a matrix \mathbf{A} with elements $(\mathbf{A})_{ij} = a_{ij}$, \cdot^T is defined as $(\mathbf{A}^T)_{ij} = a_{ji}$.
- \cdot^\dagger is an operation called hermitian conjugation, defined as $(\mathbf{A}^\dagger)_{ij} = a_{ji}^*$, and \mathbf{A}^\dagger is referred to as “\mathbf{A}-dagger.”
- NB: For real matrices, $\mathbf{A}^\dagger = \mathbf{A}^T$.
- A matrix \mathbf{A} is called \textit{hermitian} if all matrix elements are complex numbers and $\mathbf{A}^\dagger := (\mathbf{A}^*)^T = \mathbf{A}$, where \mathbf{A}^* is the matrix whose elements are complex conjugates of those in \mathbf{A}.
- \textit{The eigenvalues of a hermitian matrix are real}.
- Certain types of symmetric matrices (covariance matrices and kernel/gram matrices) are often generated from data sets, and are used extensively in ML algorithms. You’ll see a few examples as we go through the course.
Eigenvectors of real symmetric matrices

We show the following:

- **Let** \mathbf{A} **be a real symmetric matrix. Then eigenvectors associated with distinct eigenvalues are orthogonal.**

Proof: Let \mathbf{u} and \mathbf{v} be two eigenvectors with distinct eigenvalues λ and μ respectively, i.e $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{A}\mathbf{v} = \mu \mathbf{v}$. We shall prove $\mathbf{u}^T \mathbf{v} = 0$.

Since \mathbf{A} is symmetric, $(\mathbf{A}\mathbf{u})^T = \mathbf{u}^T \mathbf{A}$. Therefore $\mathbf{A}\mathbf{u} = \lambda \mathbf{u} \Leftrightarrow \mathbf{u}^T \mathbf{A}^T = \lambda \mathbf{u}^T$. Multiply on the right with \mathbf{v}:

$$\lambda \mathbf{u}^T \mathbf{v} = \mathbf{u}^T \mathbf{A} \mathbf{v} = \mu \mathbf{u}^T \mathbf{v}.$$

Hence $(\lambda - \mu) \mathbf{u}^T \mathbf{v} = 0$ and, since $\mu \neq \lambda$, $\mathbf{u}^T \mathbf{v} = 0$.

- With some more effort one can show (even with repeated eigenvalues!) that for any real symmetric $n \times n$ matrix we can find n orthogonal eigenvectors.
The action of an arbitrary matrix on a vector space can be pieced together from its action on an orthonormal basis in that vector space.

SVD measures how a circle is mapped into an ellipse; how an n-dimensional hyper-sphere is mapped into an n-dimensional hyper-ellipse.

Action of \(\begin{pmatrix} 1.0 & 2.0 \\ 0.5 & 2.5 \end{pmatrix} \) **on unit vectors** \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) **and** \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \). The lengths of the semi-major axes of the hyper-ellipse are properties of the map.
In pictures: mapping a unit circle into an ellipse

- Even when the vectors in the domain and range of the map change, their locus displays the geometrical character of the transformation enacted by the matrix.
- While the displayed pairs of vectors in the domain (red) are orthogonal by construction, the pairs they map to (blue) are usually not.
Example of SVD for recommender matrix

\[\mathbf{U} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} \]

\[\mathbf{\Sigma} = \begin{pmatrix} \sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \]

\[\mathbf{V} = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ \sqrt{\frac{2}{3}} & 0 & 0 & \frac{1}{\sqrt{3}} & 0 \end{pmatrix} \]

\[\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \]

\[\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \]
The action of an arbitrary matrix on a vector space can be pieced together from its action on an orthonormal basis \(\{v_1, v_2\} \) in that vector space, here 2-dimensional. So, \(x = (v_1^T x)v_1 + (v_2^T x)v_2 \).

The set of vector equations \(Av_j = \sigma_j u_j \) for \(j = 1, 2 \) becomes:

\[
Ax = (v_1^T x)Av_1 + (v_2^T x)Av_2 \\
= (v_1^T x)\sigma_1 u_1 + (v_2^T x)\sigma_2 u_2 \\
\Rightarrow A = v_1^T \sigma_1 u_1 + v_2^T \sigma_2 u_2
\]

Express that as \(A = U\Sigma V^T \), with \(U \) containing the columns of \(u_i \), \(V \) the columns of \(v_i \), and \(\Sigma \) a diagonal matrix with \(\sigma_i \) along the diagonal.
The reduced SVD – the range may not have a basis

- The action of an arbitrary matrix on a vector space can be pieced together from its action on an orthonormal basis \(\{v_1, \ldots, v_n\} \) in that vector space. The set of vector equations \(Av_j = \sigma_j u_j \) for \(j = 1, \ldots, n \) may be expressed as a matrix equation \(AV = \hat{U}\hat{\Sigma} \):

\[
\begin{pmatrix}
A \\
\end{pmatrix}
\begin{pmatrix}
v_1 & \cdots & v_n
\end{pmatrix}
=
\begin{pmatrix}
u_1 & \cdots & u_n
\end{pmatrix}
\begin{pmatrix}
\sigma_1 \\
\vdots \\
\sigma_n
\end{pmatrix}
\]

- Since \(V \) is an orthogonal (unitary) matrix, \(V^T V = VV^T = I \) \((V^\dagger V = VV^\dagger = I)\),

\[
A = \hat{U}\hat{\Sigma}V^\dagger
\]

- The columns of \(\hat{U} \) are \(n \) orthonormal vectors in \(\mathbb{C}^m \) \((m \geq n)\).
The full SVD describes both the domain and range of a matrix by orthonormal bases

- Extend the size of the vector space in the range from n to m by adding columns to \hat{U} to yield a $m \times m$ unitary (for complex) or orthogonal (for real) matrix U.

- To maintain the same value for the product of matrices (after all, we need to recover A from its factors), extend matrix $\hat{\Sigma}$ by adding zeros along the diagonal to obtain matrix Σ.

- For an arbitrary matrix $A \in \mathbb{C}^{m \times n}$ we have an $n \times n$ matrix V and a $m \times m$ matrix U that are both orthonormal, and a $m \times n$ matrix Σ whose non-zero entries $\sigma_i = \Sigma_{ii}$ are along the diagonal:

\[
A = U\Sigma V^\dagger
\]

- The columns of V and U are the right and left singular vectors, and the diagonal entries of Σ are the singular values of A.
Geometry of SVD: choice of basis vectors lying on circle and map

Choose the pre-image of the orthogonal pair in the range of the map.
Singular vectors describe spheres and ellipsoids by semi-major axes

- There is one choice of vector pairs (basis) in the domain that gets mapped into an orthogonal pair along the major axes of the ellipse.
- These pairs are the singular vectors of the matrix. The lengths of the semi-major axes of the ellipse are the singular values.
- There will be left and right singular vectors.
How is the SVD made useful in machine learning?

- Distance minimisation: matrix generalisation of the following
- To find a vector y from a set \mathcal{Y} closest to x we perform
 \[
 y = \arg\min_{v \in \mathcal{Y}} \|x - v\|.
 \]

For $z = (z_1, \ldots, z_n)$, $\|z\|$ is a norm – several choices:

- L_2 norm: $\|z\|_2 = \sqrt{z \cdot z} = \sqrt{\sum_i z_i^2}$
- L_1 norm: $\|z\|_1 = \sum_i |z_i|$
- L_p norm: $\|z\|_p = (\sum_i |z_i|^p)^{1/p}$
- L_0 norm: $\|z\|_0 = \#(i|z_i \neq 0)$
- L_∞ norm: $\|z\|_\infty = \max(|z_i|), 1 \leq i \leq n$.

- SVD helps find a matrix \tilde{X} from a set \mathcal{M} closest to given matrix X:
 \[
 \tilde{X} = \arg\min_{Y \in \mathcal{M}} \|X - Y\|_2.
 \]
SVD gives low-rank approximation of matrices

- We seek \(\tilde{X} = \arg\min_{Y \in \mathcal{M}} \|X - Y\|_2 \).
- By partitioning the numerically ordered diagonal entries of \(\Sigma \) into the first \(k \) and the rest, we have (from the SVD)

\[
A = U \Sigma V^T = U_k \Sigma_k V_k^T + U_{\perp} \Sigma_{\perp} V_{\perp}^T
\]

\[
\approx U_k \Sigma_k V_k^T \equiv \tilde{A}_k
\]

- \(A \) is replaced by the rank \(k \) matrix \(\tilde{A}_k \). Of all possible rank-\(k \) matrices \(B \in \mathcal{M}_k \), \(\tilde{A}_k \) constructed via the SVD gives the best approximation to \(A \) in the sense that it minimises the \(L_2 \)-norm:

\[
\tilde{A}_k = \arg\min_{B \in \mathcal{M}_k} \|A - B\|_2.
\]
Linear regression using SVD: find \(\mathbf{w} \) for smallest
\[\| \mathbf{A} \mathbf{w} - \mathbf{y} \|_2 \]

- A vector \(\mathbf{w} \) that is closest to target vector \(\mathbf{y} \) along direction \(\mathbf{u} \) is \(\mathbf{w} = \mathbf{x}^* \mathbf{v} \). Proof:

 \[x^* = \arg\min_{x \in \mathbb{R}} \| \mathbf{y} - x \mathbf{u} \|_2 = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} = \mathbf{y} \cdot \mathbf{u} \text{ projection.} \]

- Use SVD to find singular vectors \(\mathbf{u}_i \) and find projections of \(\mathbf{y} \) along each.

- Reminder: SVD expressed as

\[
\begin{pmatrix}
 \mathbf{A} \\
 \end{pmatrix}
\begin{pmatrix}
 \mathbf{v}_1 & \cdots & \mathbf{v}_n \\
 \end{pmatrix}
=
\begin{pmatrix}
 \mathbf{u}_1 & \cdots & \mathbf{u}_n \\
 \end{pmatrix}
\begin{pmatrix}
 \sigma_1 \\
 \vdots \\
 \sigma_n \\
 \end{pmatrix}
\]
Linear regression by SVD: express weights and targets in terms of singular vectors

- \(\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T = \sum_{k=1}^{r} u_k \sigma_k v_k^T \) implies \(\mathbf{A} \mathbf{v}_i = \sigma_i \mathbf{u}_i \).
- Express \(\mathbf{y} = \sum_k \beta_k \mathbf{u}_k \) and \(\mathbf{w} = \sum_i \alpha_i \mathbf{v}_i \).
- Find projection of \(\mathbf{y} \) along \(\mathbf{u}_k \) for closest vectors \((\mathbf{u}_k \cdot \mathbf{y}) \mathbf{u}_k \) to \(\mathbf{y} \) along each direction \(\mathbf{u}_k \). Choose \(\beta_k = (\mathbf{u}_k \mathbf{y}) \).
- The left hand side combines weighted features
 \[
 \mathbf{A} \mathbf{w} = \mathbf{A} \left(\sum_i \alpha_i \mathbf{v}_i \right) = \sum_i \alpha_i (\mathbf{A} \mathbf{v}_i) = \sum_i \alpha_i \sigma_i \mathbf{u}_i.
 \]
- The best fit vector to \(\mathbf{y} \) along each \(\mathbf{u}_i \) is \(\beta_i \mathbf{u}_i \). The vector in the column space of \(\mathbf{A} \) along direction \(\mathbf{u}_i \) is \(\alpha_i \sigma_i \mathbf{u}_i \).
- The coefficients \(\alpha_i \) of the optimal weight vector \(\mathbf{w} \) along each of the singular vectors \(\mathbf{v}_i \) are obtained from
 \[
 \alpha_i \sigma_i = \beta_i = \mathbf{u}_i^T \mathbf{y} \quad \Rightarrow \quad \alpha_i = \frac{\mathbf{u}_i^T \mathbf{y}}{\sigma_i}.
 \]
The best fit weight vector is

\[w = \sum_i \left(\frac{u_i^T y}{\sigma_i} \right) v_i. \]

What is the relationship between this expression and

\[w = \left(A^T A \right)^{-1} A^T y? \]

Verify

\[\left(A^T A \right)^{-1} A^T y = V \Sigma^{-1} U^T y. \]

Very small (zero) singular values cause problems. The large (infinite) components of the weight vectors track noise in the targets, not useful signals. This leads to the subject of **regularisation**.
Relationship between singular vectors/values and eigen- vectors/values

Since the eigenvectors of a matrix can be used as a basis for a vector space, it will be important to show how these constructs are related.
Represent matrix by its eigenvectors and eigenvalues

Suppose \(A \) has \(n \) linear independent eigenvectors \(v_1, v_2, \ldots, v_n \). Its stacked column vectors

\[
Q = (v_1 v_2 \cdots v_n)
\]

give representation of the matrix \(A \)

\[
A = Q \Lambda Q^{-1} \text{ if nonsingular } Q,
\]

where \(\Lambda \) is the diagonal matrix of eigenvalues \(\text{diag}(\lambda_1, \ldots, \lambda_n) \) of \(A \).

Proof: The eigenvalue equations for the \(v_i \) can be written as \(AQ = Q \Lambda \). Multiplying by \(Q^{-1} \) from the right gives the result.
Relationship between SVD and eigen-analysis

- Representation of A (real symmetric) $A = Q \Lambda Q^T$.
- For SVD of $X = U \Sigma V^T$,

$$XX^T = (U \Sigma V^T)(U \Sigma V^T)^T = (U \Sigma V^T)((V^T)^T \Sigma^T U^T) = (U \Sigma (V^T V) \Sigma^T U^T) = U(\Sigma \Sigma^T)U^T$$

$$X^TX = (U \Sigma V^T)^T(U \Sigma V^T) = ((V^T)^T \Sigma^T U^T)(U \Sigma V^T) = (V \Sigma^T(U^T U)\Sigma V^T) = V(\Sigma^T \Sigma) V^T$$

- Right singular vectors of X are eigenvectors of X^TX; left singular vectors of X are eigenvectors of XX^T. Eigenvalues are σ_i^2 where $\sigma_i = \Sigma_{ii}$.

If A is a real symmetric matrix we can construct Q from the n orthonormal eigenvectors \hat{v}_i (i.e. the eigenvectors must also be normalized to unit length) as $Q = (\hat{v}_1 \hat{v}_2 \cdots \hat{v}_n)$. We can show that Q is an orthogonal matrix ie

$$Q^{-1} = Q^T.$$

This is easily proved from the fact that $\hat{v}_i \cdot \hat{v}_j = 0$ for $i \neq j$ and $|\hat{v}_i| = 1$, which can be written as $Q^TQ = I$. Hence, we get

$$A = Q \Lambda Q^T.$$
Summary SVD/eigenvalues/vectors

- SVD for matrix $\mathbf{X} = \mathbf{U}\Sigma\mathbf{V}^T$; columns of \mathbf{U}, \mathbf{V} orthonormal, Σ has only diagonal entries non-zero $\sigma_i = \Sigma_{ii}$ (singular values).
- Definition: For a square matrix \mathbf{A}, find nontrivial vectors \mathbf{v} (eigenvectors) such that matrix multiplication behaves like scalar multiplication: $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ for scalars (eigenvalues) λ.

- For real symmetric matrices $n \times n$ matrices, eigenvalues λ are real numbers and we can always find n orthogonal eigenvectors \mathbf{v}_i, for $i = 1, \ldots, n$. This means that $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for $j \neq i$.
- Representation of \mathbf{A} (real symmetric)

$$ \mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^T $$

where $\mathbf{Q} = (\hat{\mathbf{v}}_1\hat{\mathbf{v}}_2 \cdots \hat{\mathbf{v}}_n)$ and Λ a diagonal matrix containing the eigenvalues.

- Right singular vectors of \mathbf{X} are eigenvectors of $\mathbf{X}^T\mathbf{X}$, left singular vectors of \mathbf{X} are eigenvectors of \mathbf{XX}^T, with eigenvalues σ_i^2.