Advanced Computer Architecture
ELEC3219 (2017/18)

Busses

Dr. Terrence Mak
tmak@ecs.soton.ac.uk
What is a Bus?

• A communication pathway connecting two or more devices
• Usually broadcast (all components see signal)
• Often grouped
 – A number of channels in one bus
 – e.g. 32 bit data bus is 32 separate single bit channels
• Power lines may not be shown
Data Bus

• Carries data
 – Remember that there is no difference between “data” and “instruction” at this level
• Width is a key determinant of performance
 – 8, 16, 32, 64 bit

Where is this bus?
Address bus

• Identify the source or destination of data
 – CPU needs to read an instruction (data) from a given location in memory

• Bus width determines maximum memory capacity of system
 – e.g. 8080 has 16 bit address bus giving 64k address space

Where is this bus?
Control Bus

• Control and timing information
 – Memory read/write signal
 – Interrupt request
 – Clock signals

Where is this bus?
Bus Interconnection Scheme

- CPU
- Memory
- Input and Output

- Control bus
- Address bus
- Data bus

System bus
Single Bus Problems

• Lots of devices on one bus leads to:
 – Propagation delays
 • Long data paths mean that co-ordination of bus use can adversely affect performance
 • If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to overcome these problems
Traditional Industrial Standard Architecture (with cache)
High Performance Bus
Bus Types

• Dedicated
 – Separate data & address lines

• Multiplexed
 – Shared lines
 – Address valid or data valid control line
 – Advantage - fewer lines
 – Disadvantages
 • More complex control
 • Ultimate performance
Bus Arbitration

- More than one module controlling the bus
 - e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be centralised or distributed
Centralised Arbitration

- Single hardware device controlling bus access
 - Bus Controller
 - Arbiter
- May be part of CPU or separate
Distributed Arbitration

- Each module may claim the bus
- Control logic on all modules
Timing

• Co-ordination of events on bus
• Synchronous
 – Events determined by clock signals
 – Control Bus includes clock line
 – A single 1-0 is a bus cycle
 – All devices can read clock line
 – Usually sync on leading edge
 – Usually a single cycle for an event
Synchronous Timing Diagram
Asynchronous Timing – Read Diagram

- Status lines
 - Status signals

- Address lines
 - Stable address

- Read

- Data lines
 - Valid data

- Acknowledge
Asynchronous Timing – Write Diagram
Questions
PCI Bus (Optional)

• Peripheral Component Interconnection (PCI)
• Intel released to public domain
• 32 or 64 bit
• 50 lines
PCI Bus Lines (required)

- **Systems lines**
 - Including clock and reset
- **Address & Data**
 - 32 time mux lines for address/data
 - Interrupt & validate lines
- **Interface Control**
- **Arbitration**
 - Not shared
 - Direct connection to PCI bus arbiter
- **Error lines**
PCI Bus Lines (Optional)

• Interrupt lines
 – Not shared
• Cache support
• 64-bit Bus Extension
 – Additional 32 lines
 – Time multiplexed
 – 2 lines to enable devices to agree to use 64-bit transfer
• JTAG/Boundary Scan
 – For testing procedures
PCI Commands

• Transaction between initiator (master) and target
• Master claims bus
• Determine type of transaction
 – e.g. I/O read/write
• Address phase
• One or more data phases
PCI Read Timing Diagram

CLK

FRAME#

AD

ADDRESS

DATA-1

DATA-2

DATA-3

C/BE#

BUS CMD

Byte Enable

Byte Enable

Byte Enable

IRDY#

Wait

Wait

Wait

Wait

Wait

TRDY#

Data Transfer

Data Transfer

Data Transfer

Data Transfer

DEVSEL#

Address Phase

Data Phase

Data Phase

Data Phase

Bus Transaction
PCI Bus Arbitration

CLK
REQ#-A
REQ#-B
GNT#-A
GNT#-B
FRAME#
IRDY#
TRDY#

Address Data

access-A

Address Data

access-B
Question?