Advanced Computer Architecture
ELEC3219 (2017/18)

Networks-on-Chip
(Answers)

Dr. Terrence Mak
tmak@ecs.soton.ac.uk
Torus (1) (Direct? Or Indirect?)

• K-ary n-cube: k^n network nodes
• n-dimensional grid with k nodes in each dimension
Torus (2)

- Topologies in Torus Family
 - Ring k-ary 1-cube
 - Hypercubes 2-ary n-cube
- Edge Symmetric
 - Good for load balancing
 - Removing wrap-around links for mesh loses edge symmetry
 - More traffic concentrated on center channels
- Good path diversity
- Exploit locality for near-neighbor traffic
Channel Load for Torus

- Even number of k-ary (n-1)-cubes in outer dimension
- Dividing these k-ary (n-1)-cubes gives 2 sets of k^{n-1} bidirectional channels or $4k^{n-1}$
- 1/2 (half) Traffic from each node cross bisection

$$\text{channel load} = \frac{N}{2} \cdot \frac{k}{4N} = \frac{k}{8}$$

- Mesh has 1/2 of the bisection bandwidth of torus
Butterfly (Direct? Or Indirect?)

• K-ary n-fly: k^n network nodes
• Example: 2-ary 3-fly
• Routing from 000 to 010
 – Dest address used to directly route packet
 – Bit n used to select output port at stage n
Butterfly (2)

• No path diversity \(|R_{xy}| = 1 \)
• Hop Count
 – \(\log_k n + 1 \)
 – Does not exploit locality
 • Hop count same regardless of location
• Switch Degree = 2k
• Channel Load \(\rightarrow \) uniform traffic

\[\frac{NH_{\min}}{C} = \frac{k^n(n+1)}{k^n(n+1)} = 1 \]
 – Increases for adversarial traffic
Flattened Butterfly

• Proposed by Kim et al (ISCA 2007)
 – Adapted for on-chip (MICRO 2007)

• Advantages
 – Max distance between nodes = 2 hops
 – Lower latency and improved throughput compared to mesh

• Disadvantages
 – Requires higher port count on switches (than mesh, torus)
 – Long global wires
 – Need non-minimal routing to balance load
Flattened Butterfly

• Path diversity through non-minimal routes
Clos Network (Direct? Or Indirect?)

University of Southampton
Clos Network

• 3-stage indirect network
• Characterized by triple \((m, n, r) \)
 – M: # of middle stage switches
 – N: # of input/output ports on input/output switches
 – R: # of input/output switching
• Hop Count = 4
Folded Clos (Fat Tree) (Direct? Or Indirect?)

- Bandwidth remains constant at each level
- Regular Tree: Bandwidth decreases closer to root
Fat Tree (2)

• Provides path diversity
Common On-Chip Topologies

• Torus family: mesh, concentrated mesh, ring
 – Extending to 3D stacked architectures
 – Favored for low port count switches
• Butterfly family: Flattened butterfly
Topology Summary

• First network design decision
• Critical impact on network latency and throughput
 – Hop count provides first order approximation of message latency
 – Bottleneck channels determine saturation throughput
• Question?