Data Link Layer

Error Control

Geoff Merrett
ELEC3222: Computer Networks
See Tanenbaum Chapter 3 (Data Link Layer)
Outline

• Error Control
 – Introduction

 – Error Detection
 • Parity (Single, Multiple, Interleaved)
 • Checksums
 • Cyclic Redundancy Checks (CRCs)

 – Error Correction
 • Hamming Codes
 • Binary Convolution Codes
 • Reed-Solomon Codes
 • Low Density Parity Check (LDPC) Codes
Introduction

• Some transmission media are reasonably error free
 – e.g. a fibre optic link

• Some are not
 – e.g. a wireless link

• Error models
 – Single-bit errors
 • e.g. an extreme value of thermal noise
 – Bursts of errors
 • e.g. deep fading in a wireless channel;
 • e.g. transient electrical interference on a wired link etc
Introduction

• We can use two strategies:
 – Error detection (using error detection codes), and then re-request frame
 – Error correction (using error correcting codes), aka Forward Error Correction (FEC)

• We should use something appropriate
 – If few errors, FEC will introduce unnecessary overhead
 – If many errors, retransmissions will introduce unnecessary overhead

• Might also be handled in other layers
 – FEC at the Physical and some higher layers (e.g. in real-time content streaming)
 – Error detection in Data Link, Network and Transport layers
Redundancy

- We embed an ability to detect and/or correct errors by adding redundancy

\[m \text{ (data bits)} + r \text{ (redundant check bits)} = n \text{ (total number of transmitted bits)} \]

- This is then known as an \((n, m)\) code with an \(n\)-bit codeword

- Only a fraction of the \(2^n\) possible codewords are used: \(2^m/2^n = 2^{-r}\)
 - It is this sparseness or redundancy that allows errors to be detected/corrected.

- The code rate is the fraction of the codeword that carries non-redundant information, i.e. \(= m/n\)
 - Noisy channel, a code rate of 0.5 might be suitable;
 - Reliable channel, a code rate close to 1.0 might be suitable.
Block, systematic and linear codes

• Block code
 – Any set of input bits (the \(m \)-bit message) could be looked up in a table to find the corresponding \(n \)-bit codeword
 • i.e. the \(r \) check bits are solely a function of the \(m \)-bit message

• Systematic code
 – The set of input bits (the \(m \)-bit message) is transmitted alongside the \(r \) check bits
 • i.e. the \(m \)-bits in the message appear in the \(n \)-bits in the codeword

• Linear code
 – The check bits are a linear function of the message bits
Hamming distance

- Hamming distance $d =$ the number of bits different between two codewords
 - XOR and count the 1’s

- If you know the algorithm used to create codewords, you can construct the complete set of all possible codewords.
 - $\min(d)$ is the Hamming distance of the complete code

- If two codewords are a Hamming distance d apart, it will require d single-bit errors to convert one into another

- Block codes can detect $d - 1$ errors and correct $(d - 1)/2$ errors
Error Detection
Single Parity Bit

• Even parity
 – add a redundant parity bit to make an even number of 1’s
 – Equivalent of an XOR operation
 – E.g. 1110000 → 11100001

• Odd parity
 – add a redundant parity bit to make an odd number of 1’s

• To check, see whether an even (or odd) number of bits are received
Single Parity Bit

- If a single-bit error occurs:
 - e.g. 11100101; detected, sum is wrong
 - To be expected, as Hamming distance $d = 1$.

- If a double-bit error occurs:
 - e.g. 2 errors, 11101101; not detected, sum is correct!

- If any odd number of bit-errors occur:
 - e.g. 3 errors, 11011001; detected sum is wrong

- Can detect any odd number of errors (including in the parity bit itself)
 - i.e. random errors are detected with probability 0.5!
Multiple Parity Bits

- Consider the message as a matrix w bits wide and h bits high
 - Send a separate parity bit for each w-bit row
 - r (where $r = h$) bit errors can be detected (provided max of 1 error occurs per row)
 - We add r parity bits e.g. for the message: 101100011000 (with $w = 3$, $h = 4$, and even parity):

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Still not much good for burst errors (as maximum of 1 error per row!)
Interleaved Parity

• Interleaving is a general technique
 – Converts a code that detects (or corrects) isolated errors...
 – ...into one that detects (or corrects) burst errors

• Interleaving \(r \) (where \(r = w \)) parity bits detects burst errors up to length \(r \)
 – Calculate parity bits over columns, but send data along rows
 – Parity bits are sent at the end
 – Each parity sum is made over non-adjacent bits
 – An even burst of up to \(r \) errors will not cause it to fail
Checksums

• Often just used to refer to a set of check bits (e.g. parity bits)

• However, stronger checksums are based on summing the message bits
 – and are usually placed at the end of the message

• Typically treat the message as being formed from many N-bit words, and adds N (i.e. $r = N$) check bits to the end which are the modulo 2^N sum of all words
 – e.g. Internet 16-bit 1’s complement checksum

• More effective than parity
 – e.g. if the LSB in two words have single bit flips, parity would not detect.
 – Detects bursts of up to $r = N$ errors, and random errors with probability $1 - 2^N$
 – Vulnerable to systematic errors, e.g., added zeros, swapping parts of the message etc

• Other methods of creating a checksum can provide stronger protection
 – e.g. Fletcher’s checksum: improves protection against changes in the position of data
Cyclic Redundancy Checks (CRCs)

- Parity and checksums are rarely used in the Data Link Layer
 - A stronger error detection code is in widespread use: the CRC or polynomial code
 - e.g. can detect all double bit errors and not vulnerable to systematic errors

- Treats bit strings as the coefficients of a polynomial
 - A k-bit string is regarded as the coefficient of a polynomial with k terms
 - i.e. $x^{k-1} + x^{k-2} + \ldots + x^1 + x^0$ (a polynomial with a ‘degree’ = $k-1$)

- The protocol has an agreed generator polynomial, $G(x)$
 - The degree of $M(x)$ (the polynomial corresponding to the m-bit frame) must be greater than that of $G(x)$
Calculating CRCs

- Adds bits so that transmitted frame viewed as a polynomial is evenly divisible by a generator polynomial

Start by adding \(r = k-1 \) 0’s to RHS of the \(M(x) \) bit string (the frame) – so that it becomes \(x^r \cdot M(x) \)

Divide the bit string corresponding to \(G(x) \) into \(x^r \cdot M(x) \) using modulo 2 division

Create the \(n \)-bit bit string corresponding to \(T(x) \) for transmission by subtracting the remainder from \(x^r \cdot M(x) \) using modulo-2 subtraction

This makes \(T(x) \) evenly divisible
Detecting Errors using CRCs

- $T(x)$ (the transmitted n-bit message) should clearly always divide exactly by $G(x)$ as the remainder has been subtracted from it, e.g.
 - $123 / 10 = 12$ remainder 3
 - $(123 - 3) / 10 = 12$ remainder 0

- On decoding, all the receiver has to do is calculate $T(x) / G(x)$.
 - If the result has a remainder $= 0$, no errors were detected.
 - If errors have occurred during transmission, i.e. $T(x) + E(x)$, this will give a non-zero remainder when $(T(x) + E(x)) / G(x)$ is calculated.
 - The remainder will only be zero if $E(x)$ is a factor of $G(x)$
 - See book for more information on performance

- CRCs are easy to calculate/check in hardware using shift and XOR operations
IEEE 802 and CRC-32

- IEEE 802 uses Ethernet’s CRC-32

 \[x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x^{1} + 1 \]

 - Detects:
 - all burst errors of length 32 and less
 - all bursts affecting an odd number of bits
CRCs and Parity

- Even parity is the same as CRC-1
 - $G(x) = 1x^1 + 1x^0 = (x + 1)$
 - e.g. apply to the message: 0110101_2
Error Correction
Hamming Codes

- Consider a code that will allow all single-bit errors to be corrected
- Only a fraction of the \(2^n\) bit patterns (possible codewords) are used: \(\frac{2^m}{2^n} = 2^{-r}\)
 - The others can be considered ‘illegal’ bit patterns
- Each of the \(2^m\) messages must have \(n\) illegal bit patterns one bit away from it
 - Identified by systematically inverting each of the \(n\)-bits in the valid codeword
- Therefore, each of the \(2^m\) messages requires \(n + 1\) bit patterns dedicated to it
 - Since there are a total of \(2^n\) bit patterns, \((n + 1) \cdot 2^m \leq 2^n\)
 - Because \(n = m + r\), we can say that \((m + r + 1) \leq 2^r\)
 - This gives a theoretical lower-limit on \(r\), the number of check bits needed to correct single errors
 - This theoretical limit can be achieved using Hamming codes
Hamming Codes

- The n data bits are consecutively numbered from bit 1 at the left
- Bits in positions that are powers of 2 (1, 2, 4, 8, etc) are the r check bits
- The remaining bits are sequentially filled up with the m message bits

- The check bits are just even (or odd) parity bits
- Each of the m message bits may contribute to multiple check bits
 - Rewrite the location of a message bit as its powers of two, and those are the positions it contributes to

- Hamming codes provide a code with a Hamming distance $d = 3$
 - An $m=7$-bit message, resulting in an $n=11$-bit codeword, is an (11, 7) Hamming code
Hamming Codes

- Detecting errors
 - To ‘deconstruct’ the Hamming code, the check bits are recalculated at the destination (including the check-bit) – these are the check results
 - If even parity was used, the parity sum should be 0
 - If not, an error has been detected

- Correcting errors
 - If an error has been detected, the set of check results become the error syndrome
 - This indicates which bit was erroneous, and hence can simply be flipped
(11, 7) Hamming code adds 4 check bits and can correct 1 error
Hamming Codes vs Parity

- Consider a channel with a BER of 10^{-6} and a block size of 1000 bits
- To correct a single-bit error (Hamming code):
 - We know that $(m + r + 1) \leq 2^r$
 - Therefore, $1001 \leq 2^r - r$, and hence we’d need to add 10 check bits to each block
 - Therefore, a Mb of data would require an overhead of 10,000 check bits
- To detect a single-bit error (Parity)
 - We need only 1 check-bit per block
 - Therefore, a Mb of data would require an overhead of 1000 check bits
- Once every 1000 blocks, an error will occur
 - Error correction corrects the error: i.e. total overhead = 10,000 bits
 - Error detection retransmits the block: i.e total overhead = $1000 + 1001 = 2001$ bits
- Therefore, in this case, error detection has a fifth of the overhead!
Binary Convolutional Codes

- Operates on a stream of bits, keeping internal state
 - Output stream is a function of all preceding input bits (no natural message size)
 - The number of previous bits the output depends on is the code’s constraint length
 - Bits are decoded with the Viterbi algorithm

NASA (used in 1977 Voyager missions) binary convolutional code (rate = 0.5, constraint length = 7)
Used in 802.11
Other Error Correction Codes

• Reed-Solomon codes
 – Linear block codes, often systematic
 – Instead of operating on individual bits (Hamming codes), operate on m-bit symbols
 – Used on CDs, DVDs, Blu-Ray, DSL, Satellite...

• Low-Density Parity Check (LDPC) codes
 – Linear block codes
 – Excellent error correction abilities
 – Used in 802.11, DVB, 10 Gbps Ethernet...
Questions?