ELEC6229
Advanced Systems and Signal Processing
Kalman Filtering

Bing Chu
Electronics and Computer Science
University of Southampton
Email: b.chu@ecs.soton.ac.uk
Office: Building 1, Room 2007
By the end of this week’s lectures, you should be able to

- Use Kalman filtering methods to estimate system states

Reading: Sections 4.1, 5.1-5.3, 13.2.3 (Dan’s book)
Lecture Overview

- Motivation
- State estimation problem
- Kalman filtering
- Extended Kalman filtering
System State Estimation

State estimation: to estimate the states $x(t)$

- Critical in system analysis and design
- Kalman filtering and Particle filtering
An Example

- How could we ‘reveal’ the state information from the noisy measurements?
Kalman Filter

Rudolf E. Kálmán
State Estimation Problem

Estimate past state (smoothing)

\[x(t_0) \rightarrow x(t) \]

Estimate current state (filtering)

Estimate future state (prediction)

\[y(t_0) \rightarrow y(t) \]
Filtering: A General Formulation

- The model

\[x_{k+1} = f_k(x_k, u_k, w_k) \]
\[y_k = h_k(x_k, u_k, v_k) \]

where \(w_k \sim N(0, Q_k) \) and \(v_k \sim N(0, R_k) \) are uncorrelated white noise sequences.

- The problem: estimate the current state \(x_k \) based on the current and past input and observed outputs \(u_k, y_k, k = 0, 1, \ldots, k \).
The model

\[x_k = F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + w_{k-1} \]

\[y_k = H_kx_k + v_k \]

where \(w_k \sim N(0, Q_k) \) and \(v_k \sim N(0, R_k) \) are uncorrelated white noise sequences.

The problem: estimate the current state \(x_k \) based on the current and past input and observed outputs \(u_k, y_k, k = 0, 1, \ldots, k \).
Optimal State Estimation Problem

- Obtain an optimal estimate of x_k to minimise

$$J_k = E[(\hat{x}_k - x_k)^T (\hat{x}_k - x_k)]$$

- Rudolf R. Kalman solved in this problem around 1960

- In his seminal work:
 - If the noises are zero mean uncorrelated Gaussian white noises, Kalman filter is the best among all linear and nonlinear filters.
 - Kalman filter is the optimal linear filter.
Optimal State Estimation Problem

- Obtain an optimal estimate of x_k to minimise
 $$J_k = E[(\hat{x}_k - x_k)^T(\hat{x}_k - x_k)]$$

- At time $k - 1$, we have
 - The estimation \hat{x}_{k-1}
 - Estimation error covariance P_{k-1}

- At time k, we have
 - New measurement $y_k = H_k x_k + v_k$
 - Task: to obtain \hat{x}_k and P_k
Recall Recursive Least Square

- Obtain an optimal estimate of x_k to minimise
 \[J_k = E[(\hat{x}_k - x_k)^T(\hat{x}_k - x_k)] \]

- At time $k - 1$, we have
 - The estimation \hat{x}_{k-1}
 - Estimation error covariance P_{k-1}

- At time k, we have
 - New measurement $y_k = H_k x + v_k$
 - Obtain the estimate as
 \[\hat{x}_k = \hat{x}_{k-1} + K_k(y_k - H_k \hat{x}_{k-1}) \]
Comparing RLS with KF

- Obtain an optimal estimate of x_k such that
 \[J_k = E[(\hat{x}_k - x_k)^T(\hat{x}_k - x_k)] \]

- Measurement: $y_k = H_k x + v_k$

- RLS: estimate a constant parameter x (Note: \hat{x}_{k-1}, P_{k-1} are about x)

- Optimal State Estimation: estimate a state x_k
 \[x_k = F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + w_{k-1} \]
 Note: \hat{x}_{k-1}, P_{k-1} are about x_{k-1}
Kalman Filtering: Prediction

- Optimal State Estimation: estimate a state x_k

 $$x_k = F_{k-1}x_{k-1} + G_{k-1}u_{k-1} + w_{k-1}$$

 Note: \hat{x}_{k-1}, P_{k-1} are about x_{k-1}

- Prediction: obtain a priori estimate \hat{x}_k^- of x_k using \hat{x}_{k-1}, P_{k-1} as

 $$\hat{x}_k^- = F_{k-1}\hat{x}_{k-1} + G_{k-1}u_{k-1}$$
 $$P_k^- = F_{k-1}P_{k-1}F_{k-1}^T + Q_{k-1}$$

 Note: \hat{x}_k^-, P_k^- are about x_k before y_k arrives
Kalman Filtering: Correction

- Correction: obtain a posterior estimate \hat{x}_k of x_k using \hat{x}_k^-, P_k^- as

$$\hat{x}_k = \hat{x}_k^- + K_k (y_k - H_k \hat{x}_k^-)$$

$$P_k = (I - K_k H_k) P_{k-1} (I - K_k H_k)^T + K_k R_k K_k^T$$

where

$$K_k = P_{k-1} H_k^T (H_k P_{k-1} H_k^T + R_k)^{-1}$$

- \hat{x}_k^-, P_k^- are about x_k after y_k arrives: \hat{x}_k^+, P_k^+

- Note: the derivation process is the same as RLS.
Kalman Filtering Algorithm

- At time $k - 1$, we have estimate \hat{x}_{k-1}^+ and P_{k-1}^+
- At time k, new measurement y_k arrives, obtain the estimate of x_k as follows:

Stage 1: prediction (a prior estimate)

$$\hat{x}_k^- = F_{k-1} \hat{x}_{k-1}^+ + G_{k-1} u_{k-1}$$

$$P_k^- = F_{k-1} P_{k-1}^+ F_{k-1}^T + Q_{k-1}$$

Stage 2: correction (a posterior estimate)

$$K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R_k)^{-1}$$

$$\hat{x}_k^+ = \hat{x}_k^- + K_k (y_k - H_k \hat{x}_k^-)$$

$$P_k^+ = (I - K_k H_k) P_k^- (I - K_k H_k)^T + K_k R_k K_k^T$$
Kalman Filtering Algorithm

- Initial choice of estimate \hat{x}_0 and P_0
 - \hat{x}_0 ideally should be good enough
 - P_0 should reflect the confidence in \hat{x}_0 and should be positive definite.

- Other properties:
 - Will P_k^+ converge?
 - Steady state Kalman filter.
The model:

\[x_{k+1} = \begin{bmatrix} 1 & 0.025 \\ 0 & 1 \end{bmatrix} x_k + w_k, \quad y_k = \begin{bmatrix} 0 & 1 \end{bmatrix} x_k + v_k \]
A nonlinear model

\[x_{k+1} = f_k(x_k, u_k, w_k) \]

\[y_k = h_k(x_k, u_k, v_k) \]

where \(w_k \sim N(0, Q_k) \) and \(v_k \sim N(0, R_k) \) are uncorrelated white noise sequences.

The problem: estimate the current state \(x_k \) based on the current and past input and observed outputs \(u_k, y_k, k = 0, 1, \ldots, k \).
Extended Kalman Filtering

- At time $k-1$, we have estimate \hat{x}^+_{k-1} and P^+_{k-1}
- At time k, new measurement y_k arrives, obtain the estimate of x_k as follows (via linearisation):

 Stage 1: prediction (a prior estimate)

 $$\hat{x}^-_k = f_{k-1}(x^+_{k-1}, u_{k-1}, 0)$$
 $$P^-_k = F_{k-1} P^+_{k-1} F^T_{k-1} + L_{k-1} Q_{k-1} L^T_{k-1}$$

 where

 $$F_{k-1} = \frac{\partial f_{k-1}}{\partial x} \bigg| \hat{x}^+_{k-1}, L_{k-1} = \frac{\partial f_{k-1}}{\partial w} \bigg| \hat{x}^+_{k-1}$$
Stage 2: correction (a posterior estimate)

\[\hat{x}_k^+ = \hat{x}_k^- + K_k(y_k - h_k(\hat{x}_k^-, u_k, 0)) \]

(Question: How to derive \(K_k \))

\[K_k = P_k^- H_k^T (H_k P_k^- H_k^T + M_k R_k M_k^T)^{-1} \]

\[P_k^+ = (I - K_k H_k) P_k^- (I - K_k H_k)^T + K_k R_k K_k^T \]

where

\[H_k = \frac{\partial h_k}{\partial x} |_{\hat{x}_k^-}, \quad M_k = \frac{\partial h_k}{\partial u} |_{\hat{x}_k^-} \]
Extended Kalman Filtering

- At time $k - 1$, we have estimate \hat{x}_{k-1}^+ and P_{k-1}^+
- At time k, new measurement y_k arrives, obtain the estimate of x_k as follows (via linearisation):

 Stage 1: prediction (a prior estimate)
 \[
 \hat{x}_k^- = f_{k-1}(x_{k-1}^+, u_{k-1}, 0) \\
 P_k^- = F_{k-1}P_{k-1}^+F_{k-1}^T + L_{k-1}Q_{k-1}L_{k-1}^T
 \]

 Stage 2: correction (a posterior estimate)
 \[
 K_k = P_k^-H_k^T(H_kP_k^-H_k^T + M_kR_kM_k^T)^{-1} \\
 \hat{x}_k^+ = \hat{x}_k^- + K_k(y_k - h_k(\hat{x}_k^-, u_k, 0)) \\
 P_k^+ = (I - K_kH_k)P_k^-(I - K_kH_k)^T + K_kR_kK_k^T
 \]
By the end of this week’s lectures, you should be able to

- Use Kalman filtering methods to estimate system states

Reading: Sections 4.1, 5.1-5.3, 13.2.3 (Dan’s book)
ELEC6229
Advanced Systems and Signal Processing
Kalman Filtering

Bing Chu
Electronics and Computer Science
University of Southampton
Email: b.chu@ecs.soton.ac.uk
Office: Building 1, Room 2007