ELEC6229
Advanced Systems and Signal Processing
Particle Filtering

Bing Chu
Electronics and Computer Science
University of Southampton
Email: b.chu@ecs.soton.ac.uk
Office: Building 1, Room 2007
By the end of this week’s lectures, you should be able to

- Use particle filtering methods to estimate system states

Reading: Chapter 15 (Dan’s book)
Lecture Overview

- Nonlinear estimation problem
- Bayesian state estimation
- Particle filtering
- Implementation issues
System State Estimation

- State estimation: to estimate the states $x(t)$
 - Critical in system analysis and design
 - Kalman filtering and Particle filtering

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \cdots + b_m}{s^n + a_1 s^{n-1} + \cdots + a_n}$$
Nonlinear State Estimation

- A nonlinear model

\[x_{k+1} = f_k(x_k, w_k) \]
\[y_k = h_k(x_k, v_k) \]

where \(w_k \sim N(0, Q_k) \) and \(v_k \sim N(0, R_k) \) are uncorrelated white noise sequences.

- The problem: estimate the current state \(x_k \) based on the current and past input and observed outputs \(y_k, k = 0, 1, \ldots, k \).
Figure 15.1 An example of a multimodal probability density function. What single number should be used as an estimate of x?
Bayesian State Estimation

- **Objective**: to recursively estimate the conditional pdf of x_k based on measurements $Y_k: y_1, y_2, \ldots, y_k$

$$p(x_k|Y_k) := p(x_k|y_1, y_2, \ldots, y_k)$$

- The initial estimate is the pdf of x_0

$$p(x_0) = p(x_0|Y_0)$$

- Once we know the pdf $p(x_k|Y_k)$:
 - You can obtain the estimate \hat{x}_k
 - Expectation, MAP \ldots
Bayesian State Estimation

- At time $t = k - 1$, we have

 $$p(x_{k-1}|Y_{k-1}) := p(x_{k-1}|y_1, y_2, \ldots, y_{k-1})$$

- The problem: at time $t = k$, with new measurement y_k to find

 $$p(x_k|Y_k) := p(x_k|y_1, y_2, \ldots, y_k)$$

- How could we solve this problem?

 - Prediction and update approach
Bayesian State Estimation

- At time $t = k - 1$, we have
 \[p(x_{k-1}|Y_{k-1}) := p(x_{k-1}|y_1, y_2, ..., y_{k-1}) \]

- **Prediction:**
 \[p(x_k|Y_{k-1}) \]

- We now have pdf $p(x_k|Y_{k-1})$
Bayesian State Estimation

- We have pdf \(p(x_k|Y_{k-1}) \):

- Update (correction):

\[
p(x_k|Y_k)
\]
Bayesian State Estimation

- Update (continue):

\[p(y_k|Y_{k-1}) = \int p(y_k|x_k)p(x_k|Y_{k-1}) \, dx_k \]

- Then

\[
p(x_k|Y_k) = \frac{p(y_k|x_k)p(x_k|Y_{k-1})}{p(y_k|Y_{k-1})} = \frac{\int p(y_k|x_k)p(x_k|Y_{k-1}) \, dx_k}{\int p(y_k|x_k)p(x_k|Y_{k-1}) \, dx_k}
\]
Recursive Bayesian State Estimator

- **System model:**
 \[x_{k+1} = f_k(x_k, w_k), \quad y_k = h_k(x_k, v_k) \]

- **At time** \(k - 1 \), we have \(p(x_{k-1} | Y_{k-1}) \)

- **At time** \(k \), we have new measurement \(y_k \)
 - **Prediction**
 \[p(x_k | Y_{k-1}) = \int p(x_k | x_{k-1}) \ p(x_{k-1} | Y_{k-1}) \ dx_{k-1} \]
 - **Update**
 \[p(x_k | Y_k) = \frac{p(y_k | x_k) p(x_k | Y_{k-1})}{\int p(y_k | x_k) p(x_k | Y_{k-1}) \ dx_k} \]
Recursive Bayesian State Estimator

- Once we know $p(x_k|Y_k)$:
 - We can have various estimate \hat{x}_k
 - Expectation, MAP ...

- Kalman filter can be derived from this framework:
 - Is it possible?
 - How?

- Difficulties with Bayesian state estimator
Motivation for Particle Filtering

- **System model:**
 \[x_{k+1} = f_k(x_k, w_k), \quad y_k = h_k(x_k, v_k) \]

- At time \(k - 1 \), we have \(p(x_{k-1}|Y_{k-1}) \)

- At time \(k \), we have new measurement \(y_k \)

 - **Prediction**
 \[
 p(x_k|Y_{k-1}) = \int p(x_k|x_{k-1}) p(x_{k-1}|Y_{k-1}) \, dx_{k-1}
 \]

 - **Update**
 \[
 p(x_k|Y_k) = \frac{p(y_k|x_k)p(x_k|Y_{k-1})}{\int p(y_k|x_k)p(x_k|Y_{k-1}) \, dx_k}
 \]
Basic Idea for Particle Filtering

- Particle filter is a technique for implementing recursive Bayesian filter by **Monte Carlo** sampling.
- The idea: represent the posterior density by a set of random particles with associated weights.
The idea: represent the posterior density by a set of random particles with associated weights

\[p(x) \approx \sum_{i=1}^{N} \frac{1}{N} \delta(x - x^i) \]
Particle Filtering: Importance Sampling

- The idea: represent the posterior density by a set of random particles with associated weights

\[p(x) \approx \sum_{i=1}^{N} \omega_i \delta(x - x^i) \]
Random Samples and pdf
Particle Filtering: Prediction

- **System model:**
 \[x_{k+1} = f_k(x_k, w_k), \quad y_k = h_k(x_k, v_k) \]

- **At time** \(k - 1 \), we have \(N \) particles \(\{x_{k-1}^+, 1/N\} \)
 \[p(x_{k-1} | Y_{k-1}) \approx \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_{k-1,i}^+) \]

- **Prediction:** at time \(k \), generate \(N \) a priori particles
 \[x_{k,i}^- = f_{k-1}(x_{k-1}^+, w_{k-1}^i) \]
 based on the pdf of \(w_{k-1} \) (the weights do not change)
Particle Filtering: Update

- **Update**: at time k, update the weights based on the new measurement y_k

 $$q_i = p(y_k | x_{k,i}^-), \quad i = 1, 2, \ldots, N$$

 based on system output equation and pdf of v_k.

- **Normalise the weights**

 $$q_i = \frac{q_i}{\sum_i^N q_i}, \quad i = 1, 2, \ldots, N$$

- **The posterior particles are** $\{x_{k,i}^+, q_i\}$
Particle Filtering: Resampling

- The posterior particles are \(\{x_{k,i}^+, q_i\} \)

\[
p(x_k|Y_k) \approx \sum_{i=1}^{N} q_i \delta(x - x_{k,i}^+)
\]

- Calculate your desired statistical measure (N.B. estimate) based on the above pdf

- Resampling: generate new a set of particles

\[
\left\{x_{k,i}^+, \frac{1}{N}\right\}
\]

from \(p(x_k|Y_k) \)
Particle Filtering

\[
\{ x_{k-1,i}^+, 1/N \} \quad \{ x_{k,i}^+, q_i \} \\
\{ x_{k,i}^+, 1/N \} \quad \{ x_{k+1,i}^+, q_i \} \quad \{ x_{k+1,i}, 1/N \}
\]
Particle Filtering: Implementation Issues

- Sample degeneration and impoverishment
 - Resampling schemes
- Roughening
- Regularised particle filtering
- Markov Chain Monte Carlo resampling
- Auxiliary particle filtering
- Particle filtering with other filters
Summary

- Nonlinear estimation problem
- Bayesian state estimation
- Particle filtering
- Implementation issues
By the end of this week’s lectures, you should be able to

- Use particle filtering methods to estimate system states

Reading: Chapter 15 (Dan’s book)
ELEC6229
Advanced Systems and Signal Processing
Particle Filtering

Bing Chu
Electronics and Computer Science
University of Southampton
Email: b.chu@ecs.soton.ac.uk
Office: Building 1, Room 2007