ELEC6233
Digital System Synthesis

4. Binary Decision Diagrams and SAT solvers
Binary Decision Diagrams – efficient Boolean space search

• Key paper:

• Idea:
 – Store the Boolean function in a Directed Acyclic Graph (DAG) representation.
 Compacted form of the binary decision tree.

• Reduction rules to manipulate the graph

• Great potential for exploiting heuristics in Boolean search.

• In 1992 GSAT tool reported:
 – Efficient search in 300 dimensions
Methods developed in 1990s – local search

• Able to perform local optimisation:
 – Starting point:
 • a certain variable assignment
 – Cost function (Penalty function):
 • number of unsatisfied clauses in the Boolean function
 – Basic procedure:
 • Move to an adjacent point in the Boolean space by flipping one
 variable assignment, recalculate the cost

• Local minima:
 – Heuristically accept moves that worsen the cost function to exit from
 local minima – this is where BDDs offer great potential!

• Such solvers are typically incomplete
 – i.e. cannot prove unsatisfiability
Further developments

• **1994: Hannibal**
 – 3000 variables

• **1996: Stalmarck’s algorithm**
 – 1000 variables

• **1996: GRASP**
 – Conflict driven learning and non-chronological backtracking
 – Practical SAT problems in high-level synthesis can be solved in reasonable time
 • 1000 variables

• **1997: RelSAT – also proposed conflict driven learning**
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]

\[a = 0, \ d = 1 (implied) \]
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]

\[a=0, d=1 \text{(implied)} \]

\[c=1 \]
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]

\[a = 0, \quad d = 1 \text{(implied)} \]
\[c = 1, \quad h = 0 \text{(implied)} \]
Conflicting Driven Learning and Non-Chronological Backtracking example

\[
\begin{align*}
 a + d \\
 a + \bar{c} + \bar{h} \\
 a + h + l \\
 b + k \\
 \bar{g} + \bar{c} + i \\
 \bar{g} + h + \bar{i} \\
 g + h + \bar{j} \\
 g + j + \bar{l}
\end{align*}
\]

- **a = 0, d = 1 (implied)**
- **c = 1, h = 0 (implied), l = 1 (implied)**
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \overline{c} + \overline{h} \]
\[a + h + l \]
\[b + k \]
\[\overline{g} + \overline{c} + i \]
\[\overline{g} + h + \overline{i} \]
\[g + h + \overline{j} \]
\[g + j + \overline{l} \]

\[a = 0, \ d = 1 \text{(implied)} \]
\[c = 1, \ h = 0 \text{(implied)}, \ I = 1 \text{(implied)} \]
\[b = 0 \]
Conflicting FOMs:

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]

Example Output:

- **a = 0, d = 1 (implied)**
- **c = 1, h = 0 (implied), l = 1 (implied)**
- **b = 0, k = 1 (implied)**
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]

\[a = 0, \ d = 1 \text{(implied)} \]
\[c = 1, \ h = 0 \text{(implied)}, \ l = 1 \text{(implied)} \]
\[b = 0, k = 1 \text{(implied)} \]
\[g = 1 \]
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]

Conflict \(i = 0, 1 \)

\[a = 0, \quad d = 1 \text{(implied)} \]
\[c = 1, \quad h = 0 \text{(implied)} \]
\[l = 1 \text{(implied)} \]
\[b = 0, \quad k = 1 \text{(implied)} \]
\[g = 1 \]
Conflict Driven Learning and Non-Chronological Backtracking example

\[
a + d
a + \bar{c} + \bar{h}
a + h + l
b + k
\bar{g} + \bar{c} + i
\bar{g} + h + \bar{i}
g + h + \bar{j}
g + j + \bar{l}
\]

\[
\bar{g} + \bar{c} + h \rightarrow \text{conflict}
\]

Add conflict clause: \(\bar{g} + \bar{c} + h\)
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]
\[\bar{g} + \bar{c} + h \] \(\text{added clause} \)

Backtrack to the decision level of variable c with implication \(g=0 \)
Conflict-Driven Learning - advantages

- **Learned clause is useful forever!**
- Useful in generating future conflict clauses
- Can restart, i.e. abandon the current search tree and reconstruct a new one
 - Adds to robustness in the solver
 - The clauses learned before the restart are *still in the Boolean function* after the restart and can help pruning the search space
Conflict Driven Learning and Non-Chronological Backtracking example

\[a + d \]
\[a + \bar{c} + \bar{h} \]
\[a + h + l \]
\[b + k \]
\[\bar{g} + \bar{c} + i \]
\[\bar{g} + h + \bar{i} \]
\[g + h + \bar{j} \]
\[g + j + \bar{l} \]
\[\bar{g} + \bar{c} + h \]

SAT assignment: \(a=0, b=0, c=0, d=1, g=1, h=1 \).
After adoption of Conflict-Driven Learning, SAT became practical!

- Conflict driven learning greatly increases the capacity of SAT solvers
- Realistic high-level synthesis applications became plausible
 - Nowadays thousands and even millions of variables are handled
 - Typical applications in Electronic Design Automation that can make use of SAT
 - Formal circuit verification without simulation
 - FPGA routing
 - Scheduling tasks
 - Many others...
- Research direction changes towards more efficient implementations
2001: CHAFF – very efficient SAT solver

- One to two orders of magnitude faster than other SAT solvers

- Widely Used:
 - Formal verification
 - Hardware and software
 - NuSMV – Symbolic Verification toolset
 - Automatic theorem provers
 - Alloy – Software Model Analyzer at M.I.T.
 - haRVey – Refutation-based first-order logic theorem prover
 - Several industrial users – Intel, IBM, Microsoft, ...
Large example attempted by CHAFF

- Industrial processor verification reported
 - 14 cycle behavior

- Statistics
 - 1 million variables
 - 10 million literals initially
 - 200 million literals including added clauses
 - 30 million literals finally
 - 4 million clauses (initially)
 - 200K clauses added
 - 1.5 million decisions
 - 3 hours run time
CHAFF Approach

• Make the core operations fast
 – most time-consuming parts:
 • Boolean Constraint Propagation (BCP – more on this to follow) and Decision Trees
• Emphasis on coding efficiency and elegance
• Emphasis on optimization of data cache behaviour
• Emphasis on good search space pruning, i.e. conflict resolution and learning

CHAFF challenges: large (in-memory) database, CPU intensive search
Boolean Constraint Propagation

- **Boolean Constraint Propagation (BCP) == Unit Propagation (UP) == One-literal Rule (OLR)**
- BCP is based on unit clauses, i.e. clauses that are composed of a single literal
- If a set of clauses contains the unit clause U, the other clauses are simplified by the iterative application of the following two rules:
 - 1. every clause (other than clause U itself) containing U is removed
 - 2. in every clause that contains the negation of U: \overline{U}, the literal \overline{U} is removed
- The application of these two rules leads to a new, simpler set of clauses, that is equivalent to the old one.
BCP example

\[F = a(a + b)(\overline{a} + c)(\overline{c} + d) \]

1. since \((a + b)\) contains \(a\), this clause can be removed

2. since \((\overline{a} + c)\) contains the negation of \(a\), \(\overline{a}\) can be removed from the clause

Hence: \(F = ac(\overline{c} + d)\)

3. since \((\overline{c} + d)\) contains the negation of \(c\), \(\overline{c}\) can be removed from the clause

Hence: \(F = acd\)

Exercise: prove by some method, algebra, truth table or K-map, that the above three forms are equivalent.
Many variants of BCP were proposed, e.g. SATO

• The idea:
 – Each clause has a head pointer and a tail pointer.
 – All literals in a clause before the head pointer and after the tail pointer have been assigned false.
 – SATO invariant: If a clause can become SAT via any sequence of assignments, then this sequence will include an assignment to one of the literals pointed to by the head/tail pointer.
Decision Heuristics – Common Sense

- DLIS (Dynamic Largest Individual Sum) is a relatively simple dynamic decision heuristic
 - Simple and intuitive: At each decision simply choose the assignment that satisfies the most unsatisfied clauses.
 - However, considerable work is required:
 - Must touch each clause that contains a literal that has been set to true. Often restricted to initial (not learned) clauses.
 - Maintain “SAT” counters for each clause
 - When counters transition 0→1, update rankings.
 - Need to reverse the process for unassignment.
 - The total effort required for this and similar decision heuristics may be significantly more than the basic BCP algorithm.

- Look ahead SAT algorithms even more CPU intensive, GPUs have been used recently:
BerkMin SAT solver – Decision Making Heuristics

- Identify the most recently learned clause which is unsatisfied
- Pick most active variable in this clause to branch on
- Variable activities
 - updated during conflict analysis
 - decay periodically
- If all learnt conflict clauses are satisfied, choose a variable using a global heuristic
- Increased emphasis on “locality” of decisions
How to verify a SAT Solver?

• If it claims the instance is satisfiable, it is easy to check the claim.
 – But how about unsatisfiability claims?
• An unsatisfactory search process is not necessarily a proof of unsatisfiability
• Need an independent check for SAT claims
• Checker must be automatic
 – Must be able to work with current state-of-the-art SAT solvers
• The SAT solver dumps a trace (on disk) during the solving process from which a resolution graph can be derived
• A third party checker constructs the empty clause by resolution using the trace
Extracting an unsatisfiable core from a bigger unsatisfiable logic problem

• Extract a small subset of unsatisfiable clauses from an unsatisfiable SAT instance

• Motivation:
 – Debugging and redesign: SAT instances are often generated from real world applications with certain expected results:
 • If the expected result is unsatisfiable, but the instance is satisfiable, then the solution is a “stimulus” or “input vector” or “counter-example” for debugging
 – Combinational Equivalence Checking
 – Bounded Model Checking
 • What if the expected result is satisfiable?
 – SAT Planning
 – FPGA Routing
 – Relaxing constraints in a design:
 • If several constraints make a certain property hold, are there any redundant constraints in the system that can be removed without violating the property?
Summary of SAT

• Rich history of emphasis on practical efficiency.
• Many successful applications reported.
• Need to account for computation cost in search space pruning.
• Need to match algorithms with underlying processor architectures.
 – GPUs, many core systems, and cloud clusters are used in recent years.
• Specific problem classes can benefit from specialized algorithms
 – Identification of problem classes?
 – Dynamically adapting heuristics?
• Research papers continue to be published – much room to learn and improve.