ELEC6234
Embedded Processor Design

Inter processor communication

Embedded multicore trends

Yesterday
A few large cores on each chip
Shared global structures: bus, L2 caches
Only option for future scaling is to add more cores

Today & tomorrow
100’s to 1000’s of simpler cores
[S. Borkar, Intel, 2007]
Simple cores are more power and area efficient

Major communication challenges

Moore’s Gap due to many core

- Diminishing returns from single CPU mechanisms (pipelining, caching, etc.)
- Wire delays
- Power envelopes

Performance (GOPS)

Source: Jason Miller, Carbon Research Group, MIT

Typical inter-processor communication systems

CPU

Local memory

Complete system

Internet

[Diagram showing inter-processor communication systems]
In this configuration there is exactly one path from each source to any particular destination.

1. Each processor has its own OS
2. Only master runs an OS

- Interconnect topologies:
 - (a) single switch
 - (b) ring
 - (c) grid
 - (d) double torus
 - (e) cube
 - (f) hypercube

Modern approach in many-core embedded systems

- A few large cores run OS.
- Many small cores run tasks.
- Small cores are heterogeneous, i.e., application specific.

Tightly-coupled CPUs that do not share memory

Multi-port memory systems

The primary advantage of caches is their ability to reduce the average access time in processors. When the processor finds a word in cache during a read operation, the main memory is not involved in the transfer. If the operation is to write, there are two commonly used procedures to update memory:

- In the write-through policy, both cache and main memory are updated with every write operation.
- In the write-back policy, only the cache is updated and the location is marked so that it can be copied later into main memory.

However, in multi-core cached systems with a shared memory, cache coherence needs to be maintained.

In a shared memory multiprocessor system, all the processors share a common memory. In addition, each processor may have a local memory, part or all of which may be a cache.

- The same information may reside in a number of copies in some caches and main memory. To ensure the ability of the system to execute memory operations correctly, the multiple copies must be kept identical.
- This requirement imposes a cache coherence problem.
- A memory scheme is coherent if the value returned on a load instruction is always the value given by the latest store instruction with the same address.

Shared memory contents after processor P1 writes X. P2 and P3 caches must be updated to maintain coherence.
Summary

• Many forms of multiple processor communication systems
• Architecture must be carefully designed to fully utilize the multiple resources
• Programming is a major challenge
• Communication, memory, energy consumption are important factors influencing the system cost and performance
• Embedded On-chip Multi-Processor (MPSoC) technology appears to be growing