Elliptic Curve Cryptography
Exercises

Exercise 1: If \(P = (-3, 9) \) and \(Q = (-2, 8) \) on the elliptic curve \(y^2 = x^3 - 36x \), find \(P + Q \) and \(2P \). Find all points \(P \) such that \(2P = O \).

Exercise 2: Find the quadratic residues in \(Z_7 \) and \(Z_{11} \), together with their square roots.

Exercise 3 Let \(F = Z_5 \). Find the orders of the elliptic curves \(y^2 = x^3 - 1 \) and \(y^2 = x^2 + x + 1 \).

Exercise 4 Let \(E_1 \) and \(E_2 \) be the elliptic curves \(y^2 = x^3 - x \) and \(y^2 = x^3 - x + 1 \), with \(F = Z_5 \). Show that both have order 8. Show that \(E_1 \) is not cyclic. Is \(E_2 \) cyclic?

Exercise 5 Let \(E \) be the elliptic curve \(y^2 = x^3 + x + 6 \) over \(F = Z_{11} \). Show that \(|E| = 13\). Taking \(P = (2, 7) \) as a generator, find an integer \(i \) such that \(iP = (8, 8) \) in \(E \).

References

1. G. A. Jones and D. Singerman, Complex Functions, CUP.