Electronic Circuits
ELEC1200

USMC campus: Dr Low Siow Yong
Highfield campus: Dr Dan Spencer
Prof Neil White
Housekeeping

- Lectures (Check your timetable weekly)
 - One 2-hour lecture and one 1-hour weekly
 - Primary source of information

- Tutorials
 - One 1-hour tutorial weekly
 - Feedback on problem sheets etc

- Laboratory – ELEC1029 (Part 1 EEE labs)
 - ELEC1200 -> Two 3-hour dedicated sessions (T1 & T2)
 - ELEC1029 -> Other generic first year labs (Xs)
 - X0 starts tomorrow, X1 next week.
 - T1 next Tuesday
Assessment

- No final examination
- 0% Problem Sheets (PS) (8 in total)
 - First PS due next week (Wk2)
 - https://forms.office.com/Pages/ResponsePage.aspx?id=-XhTSvQpPk2-iWadA62p2H4tItromDBAnE3TrN6PTNIUQVI4WUszU01aN0haWU9XS1lV M0VNWTExUS4u
- 65% In-Class Tests (2x), in-class exams, Wks 6 & 15, respectively
 - Test 1, 5-6pm, 5-6pm Wed 7th Nov 2018 (Week 6)
 - Test 2, 5-6pm, 5-6pm Wed 9th Jan 2019 (Week 15)
- 10% Technical labs, Ts (only T1 & T2)
- 10% Skills labs, Xs, e.g., X0, X1 etc
- 15% Design project (D1), Wks 16-17
- Self paced maths on complex numbers ~%
Resources

https://secure.ecs.soton.ac.uk/notes_my/elec1200/

Core textbook

Other references

• Senturia S D, Wedlock B.D. Electronic Circuits and Applications, Wiley, 1975
• www
Syllabus ELEC1200

• PRINCIPLES OF CIRCUITS
• STEP RESPONSE OF RL AND RC CIRCUITS
• COMPLEX NUMBERS
• AC THEORY
• RESONANCE
• THREE PHASE SYSTEMS
• Non-Linear Circuits - DIODE CIRCUITS
Electronic Circuits 1200

• To explain the mathematical techniques needed to analyse linear and simple non-linear electronic circuits (ideal)

"Learning is by nature curiosity
... prying into everything, reluctant to leave anything, material or immaterial, unexplained."
— Alexandrinus Philo

Wisdom
-Knowledge
-Experience
->Good judgement
Aims and Objectives

• A1. Understand the ideal building blocks of circuit theory.
• A2. Understand the key ideas in circuits, such as impedance, power and resonance.
• A3. Analyse ideal analogue AC circuits, in the context of both single and three phase systems.
• A4. Analyse AC circuits using complex numbers and phasors.
• A5. Analyse transient behaviour in RC and RL circuits in the time domain.
Electronic Circuits 1200

- Circuit theory
 - Studies the behaviour of ideal electrical systems
 - All about voltages/currents
Physical System

Q?: Which causes which, current or voltage?
Revisiting Voltage: An illustration

One Joule of energy is needed to create 1V.
An Analogy: Water pump

Images adapted from http://www.allaboutcircuits.com/vol_1/chpt_1/4.html
Ideal components – a circuit building blocks

- Resistor, R
- Capacitor, C
- Inductor, L
- Power sources – voltage/current
- Diode
- Transistor (next semester)

Don’t forget the wires
Defns: Branch, node, loop

- **Branch (B)** - any two terminal element
- **Node (N)** - Two or more branches connected at the same point
- **Loop (L)** - A closed path in the circuit
Power supply

Diagram showing different voltage levels and configurations.
Passive sign convention

The \(v \) in red denotes one way of specifying the voltage across the element.
Notational reminder

Single subscript V_a
Double subscript V_{ab}
An example

Find V_{ab}

$$V_{ab} = V_a - V_b = 10 - 4 = 6V$$

$$V_a = V_{6\Omega} + V_{4\Omega} = 6 + 4 = 10V$$

$$V_a = +E = 10V$$
Q?: Find V_1 and V_2
Voltage & Current Sources
Ohm’s Law

\[I = \frac{V}{R} \]

Adapted from http://www.sengpielaudio.com/calculator-ohmslaw.htm
Ohm’s Law

Q?: So what can we say about the straight line?

Q?: Does it hold for all V and I?
Ohm’s Law

Large resistance

Small resistance

Diode

Battery

Adapted from http://upload.wikimedia.org/wikipedia/commons/d/d7/FourIVcurves.svg

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity (Ω·m)</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1.64×10^{-8}</td>
<td>Conductor</td>
</tr>
<tr>
<td>Copper</td>
<td>1.72×10^{-8}</td>
<td>Conductor</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.8×10^{-8}</td>
<td>Conductor</td>
</tr>
<tr>
<td>Gold</td>
<td>2.45×10^{-8}</td>
<td>Conductor</td>
</tr>
<tr>
<td>Carbon</td>
<td>4×10^{-5}</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>Germanium</td>
<td>47×10^{-2}</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>Silicon</td>
<td>6.4×10^{2}</td>
<td>Semiconductor</td>
</tr>
<tr>
<td>Paper</td>
<td>10^{10}</td>
<td>Insulator</td>
</tr>
<tr>
<td>Mica</td>
<td>5×10^{11}</td>
<td>Insulator</td>
</tr>
<tr>
<td>Glass</td>
<td>10^{12}</td>
<td>Insulator</td>
</tr>
<tr>
<td>Teflon</td>
<td>3×10^{12}</td>
<td>Insulator</td>
</tr>
</tbody>
</table>
Standard values of commercially available resistors.

<table>
<thead>
<tr>
<th>Ohms (Ω)</th>
<th>Kilohms (kΩ)</th>
<th>Megohms (MΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.0 100</td>
<td>1.0 10.0</td>
</tr>
<tr>
<td>0.11</td>
<td>1.1 110</td>
<td>1.1 11.0</td>
</tr>
<tr>
<td>0.12</td>
<td>1.2 120</td>
<td>1.2 12.0</td>
</tr>
<tr>
<td>0.13</td>
<td>1.3 130</td>
<td>1.3 13.0</td>
</tr>
<tr>
<td>0.15</td>
<td>1.5 150</td>
<td>1.5 15.0</td>
</tr>
<tr>
<td>0.16</td>
<td>1.6 160</td>
<td>1.6 16.0</td>
</tr>
<tr>
<td>0.18</td>
<td>1.8 180</td>
<td>1.8 18.0</td>
</tr>
<tr>
<td>0.20</td>
<td>2.0 200</td>
<td>2.0 20.0</td>
</tr>
<tr>
<td>0.22</td>
<td>2.2 220</td>
<td>2.2 22.0</td>
</tr>
<tr>
<td>0.24</td>
<td>2.4 240</td>
<td>2.4</td>
</tr>
<tr>
<td>0.27</td>
<td>2.7 270</td>
<td>27</td>
</tr>
<tr>
<td>0.30</td>
<td>3.0 300</td>
<td>30</td>
</tr>
<tr>
<td>0.33</td>
<td>3.3 330</td>
<td>33</td>
</tr>
<tr>
<td>0.36</td>
<td>3.6 360</td>
<td>36</td>
</tr>
<tr>
<td>0.39</td>
<td>3.9 390</td>
<td>39</td>
</tr>
<tr>
<td>0.43</td>
<td>4.3 430</td>
<td>43</td>
</tr>
<tr>
<td>0.47</td>
<td>4.7 470</td>
<td>47</td>
</tr>
<tr>
<td>0.51</td>
<td>5.1 510</td>
<td>51</td>
</tr>
<tr>
<td>0.56</td>
<td>5.6 560</td>
<td>56</td>
</tr>
<tr>
<td>0.62</td>
<td>6.2 620</td>
<td>62</td>
</tr>
<tr>
<td>0.68</td>
<td>6.8 680</td>
<td>68</td>
</tr>
<tr>
<td>0.75</td>
<td>7.5 750</td>
<td>75</td>
</tr>
<tr>
<td>0.82</td>
<td>8.2 820</td>
<td>82</td>
</tr>
<tr>
<td>0.91</td>
<td>9.1 910</td>
<td>91</td>
</tr>
</tbody>
</table>

The E12 Resistor Series

![E12 Resistor Series Diagram](image-url)
A simple series circuit

Q?: What’s the current across R?
Parallel circuit

By inspection $E = V_1 = V_2$

Is $I_s = I_1 + I_2$?

Q?: Parallel hence same voltage or same voltage hence parallel
Kirchhoff’s Law

• Kirchhoff’s current law (KCL)
 – Algebraic sum of the currents entering and leaving a node at any instant is zero

• Kirchhoff’s voltage law (KVL)
 – Algebraic sum of the voltages around any loop in a circuit is zero for all time
KCL: Conservation of Charge

KCL: Algebraic sum of the currents entering and leaving a node at any instant is zero

\[\sum I_i = \sum I_o \]

\[I_1 + I_4 = I_2 + I_3 \]

\[4 \text{ A} + 8 \text{ A} = 2 \text{ A} + 10 \text{ A} \]
Q?: Negative current, what does it mean?

\[\Sigma I_i = \Sigma I_o \]

\[I_1 + 22 \text{ mA} = 17 \text{ mA} \]

\[I_1 = 17 \text{ mA} - 22 \text{ mA} = -5 \text{ mA} \]
KVL: Conservation of energy

KVL: Algebraic sum of the voltages around any loop in a circuit is zero

Q?: What has this to do with conservation of energy?

\[+V_1 + V_2 - E = 0 \]
Q?: Why parallel branches have the same voltage?

\[V_1 = E = 12V \]
\[V_2 = E = 12V \]
\[V_1 = V_2 = E = 12V \]
Kirchhoff’s versus Ohm’s

- Ohm’s law – provides local information across each individual element in a circuit
- Kirchhoff’s laws – gives the relationships among all the elements in a circuit
Resistors

• Recall Ohm’s Law, $V=IR$

• Series

• Parallel

Q: What is R_{eq}
Another example:

- Voltage divider
- Current divider
Find the current in the circuit below.
Open and Short Circuits

(a) Open circuit

\[I = 0 \text{ A} \]

\[V \]

System

(b) \[V_{\text{open circuit}} = E \text{ volts} \]

(c) Open circuit

\[I = 0 \text{ A} \]

120 V

Fuse

Internal connection in system

System

Contact

Open circuit

Reflector

Battery

Filament in bulb

Open circuit

120 V
Short Circuit

(a) Short circuit

(b) Will open due to excessive current

V_{\text{short circuit}} = 0 \text{ V}
Open and Short Circuits

I_T = 12 mA

Find I
a) Find the open circuit voltage V_L

b) If the 2.2$k\Omega$ resistor is short circuits, what is the value of V_L?

c) Determine V_L if the 4.7$k\Omega$ is open circuit
Loading effects
Now we can analyse this circuit.
What next?

- Circuit Analysis: compute/simulate a known circuit
 - What for?
- Circuit Synthesis: Synthesise/design a circuit to meet a particular solution/requirement
 - Visualises a desired outcome
 - Another round of analysis, synthesis and evaluation!
 - Analysis - Understand the problem
 - Synthesis – Finding solutions
 - Evaluation – validity of the solutions, alternatives?
 - power consumption, performance etc

This is what you should be getting at the end of this course!
Complex numbers
Definitions/Refreshers
Capacitors
<table>
<thead>
<tr>
<th>MULTIPLE</th>
<th>PREFIX</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
</tr>
</tbody>
</table>
Recap: Definitions

- **Charge, q** – unit Coulomb (C), 1C = 6.242x10^{18} electrons
- **Current, I** – unit Ampere (A), \(I = \frac{dq}{dt} \), 1A is the current in which 1C of charge move through a cross section of a conductor in 1s.
- **Voltage, v** – unit Volt (V), electrical potential difference or amount of work/energy needed to move a unit charge between 2 points, \(v = \frac{dw}{dq} \).
- **Power, P** – unit Watt (W), rate of change of work done, \(P = \frac{dw}{dt} \)

A charge of 1C delivers an energy of 1J as it moves through 1V
Questions

• What’s the difference between power and energy?

A 1.2-kW toaster takes roughly 4 minutes to heat four slices of bread. Find the cost of operating the toaster once per day for 1 month (30 days). Assume energy costs => TNB ~21.8cents/kWh

\[
\text{Cost (\$)} = 1.2kW \times \frac{4}{60} \times 30 \times 21.8c/kWh = ?
\]
Q: Will the circuit breaker trip?
Q?: Find I_1, I_2, I_3 and I and their respective directions.
For the circuit shown in Figure 1:

a) Find V_a, V_b and V_{ab}.

b) Find i_1, i_2, i_3 and use the results to find i.

Q?: What can you conclude about the 10V source?