CMOS logic circuits

ELEC 1202

How do we connect FETs?
Comparing market sizes and forecasted growth rates for systems ICs.

[Graph: Total Memory IC Market ($B)]

Source: IC Insights

[Graph: End-Use Systems Markets ($B) and Growth Rates]

[Link: http://eecatalog.com/chipdesign/2015/03/18/comparing-market-sizes-and-forecasted-growth-rates-for-systems-ics/]

Basis of NMOS Inverter

- Drain current i_D
- V_{DD} positive power supply
- Load resistor R_L
- Gate-source voltage V_{GS}
- Drain-source voltage V_{DS}
- $0V$
Inverter circuits

NMOS

PMOS

PMOS
CMOS inverter

<table>
<thead>
<tr>
<th>Input</th>
<th>NMOS</th>
<th>PMOS</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘0’</td>
<td>OFF</td>
<td>ON</td>
<td>‘1’</td>
</tr>
<tr>
<td>‘1’</td>
<td>ON</td>
<td>OFF</td>
<td>‘0’</td>
</tr>
</tbody>
</table>

![CMOS inverter diagram](image)
CMOS NAND

<table>
<thead>
<tr>
<th>Input A</th>
<th>Input B</th>
<th>P1</th>
<th>P2</th>
<th>N1</th>
<th>N2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘0’</td>
<td>‘0’</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>‘1’</td>
</tr>
<tr>
<td>‘0’</td>
<td>‘1’</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>‘1’</td>
</tr>
<tr>
<td>‘1’</td>
<td>‘0’</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>‘1’</td>
</tr>
<tr>
<td>‘1’</td>
<td>‘1’</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>‘0’</td>
</tr>
</tbody>
</table>
CMOS NAND

The physical layout of a NAND circuit. The larger regions of N-type diffusion and P-type diffusion are part of the transistors. The two smaller regions on the left are taps to prevent latchup.

https://en.wikipedia.org/wiki/CMOS
Advantages of CMOS

The main advantage of MOS technology is that it has very low power consumption.