Current & Resistance

- Current & current density
- Ohm’s law (microscopic)
- Ohm’s law (macroscopic)

https://cosmolearning.org/video-lectures/ohms-law-resistivity-currents/
Current and current density

- Current: \(I[A] = \frac{Q[C]}{t[s]} \)
 - positive particle flow

\[
i = \frac{dq}{dt} \quad q = \int_0^t dq = \int_0^t i \, dt
\]

- Current density \(J = \frac{I[A]}{A[m^2]} \)

\[
i = \int \vec{J} \cdot d\vec{A} = JA
\]
Drift Velocity

- Relation between I and V
- Relation between J and E
 - J=I/A and E=V/d

- Infinite acceleration?
 - Yes: superconductor
 - No: scattering

- Average time between collision τ
 - Statistical average!
 - Independent of Drift velocity!
 - Thermal/Diffusion velocity much larger

\[
F = ma = qE
\]
\[
a = eE / m
\]
\[
v_d = a = \frac{eE}{m}
\]
\[
v_{th} = 10^6 \text{ m} / \text{s} \quad v_d = 10^{-4} \text{ m} / \text{s}
\]
Current, Velocity

- Moving particle in a medium
- Relation between velocity and current

\[n = \text{number of charges } e \text{ per unit volume} \]

\[Q = neAd = \text{total mobile charge in length } d \text{ of the conductor} \]

\[t = \frac{d}{V_d} = \text{time for this charge to sweep past the current measuring point} \]

\[I = \frac{Q}{t} = \frac{neAd}{d/V_d} \]

\[I = neA V_d \]
Ohm’s law (microscopic)

\[v_d = a \tau = \frac{eE \tau}{m} \]

\[i = enA_d \]

\[J = \frac{i}{A} \]

\[J = en v_d = \frac{ne^2 E}{m} \tau \]

- Conductivity \(\sigma \)

\[J = \sigma E \quad \sigma = \frac{ne^2 \tau}{m} \]
Ohm’s law (macroscopic)

\[J = \sigma E \quad \sigma = \frac{ne^2 \tau}{m} \]

- Relation between \(I \) and \(V \)
- Resistivity \(\rho \) \(\rho = 1/\sigma \)

\[i = JA \quad V = EL \quad i = \sigma \frac{AV}{L} \quad i = \frac{AV}{\rho L} \]

- Resistance \(R \)

\[R = \rho \frac{L}{A} = \frac{V}{i} \]
Ohm’s law (macroscopic)

- What is Ohm’s law?
- $I \propto V$
 - Polarity and direction
 - Not always true!
 - Superconductors (no resistance)
 - Asymmetric materials (σ is a tensor)
- Ohmic material: satisfies Ohm’s law
- Ohmic contact: voltage drop negligible
 - Not diodes!
Power (Lines)

- Power P (rate of energy transfer)
 \[U = Vdq = VIdt \quad P_{tr} = \frac{dU}{dt} = VI \]

- Resistive dissipation (power loss)
 \[P_{loss} = I^2R \quad \frac{P_{loss}}{P_{tr}} = \frac{IR}{V} \]

- High voltage gives lower losses
 - $I=\Delta V/R$ not $I=V/R$!
 - In resistive circuit $\Delta V=V$; once at ground no power left
 - In power lines $\Delta V<<V$; losses are very small

- How to get high voltage?
 - Transformer: AC voltage required
Definitions

- Scattering time τ
- Conductivity σ
 \[\sigma = \frac{ne^2\tau}{m} = ne\mu \]
- Resistivity ρ
 \[\rho = \frac{1}{\sigma} \]
- Mobility μ
 \[= \frac{e}{m} \]
Resistance (Temperature)

- Temperature coefficient of metal resistance
 - Scattering time decreases
 - Resistance increases

\[R = R_0 \left(1 + \alpha (T - T_0) \right) \]

\[TCR = \alpha [10^{-3} K^{-1}, \text{ ppm} / K] \]

<table>
<thead>
<tr>
<th>metal</th>
<th>(\rho \ [10^{-9} \Omega m])</th>
<th>(\alpha \ [10^{-3}/^\circ C])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>17</td>
<td>4.0</td>
</tr>
<tr>
<td>Al</td>
<td>27</td>
<td>4.3</td>
</tr>
<tr>
<td>CuNi(Mn)</td>
<td>450</td>
<td>0.02</td>
</tr>
<tr>
<td>Si (pure)</td>
<td>>1G</td>
<td>(-75)</td>
</tr>
</tbody>
</table>

- Temperature dependence of semiconductor resistance
 - Carrier concentration increases
 - Resistance decreases (not linear)
Figure 1 shows an electric cable with a core Cu conductor, a dielectric material, and a conducting sheath around it. It is rated at 600MW power transmission at a potential of 400kV.

(a) Use Gauss' law to derive an expression for the electric field within the dielectric material. [5 marks]

(b) Draw a graph of the potential and electric field against radial distance. [5 marks]

(c) Determine the capacitance per unit length of the system, given that \(a=20\text{mm}\) and \(b=60\text{mm}\) and \(\varepsilon_r=3\). [5 marks]

(d) Calculate the maximum electric field in the dielectric. [5 marks]

(e) Calculate the power loss in the cable given the resistivity of the Cu core is 17 n\(\Omega\)m and the length of the cable is 500km. [5 marks]