1. Prove that applying conservation of energy principle for a block-spring oscillator system without friction is equivalent to the fundamental differential equation that describes a simple harmonic oscillator.

2. Prove the same for a LC circuit.

3. A 1.5 \(\mu \text{F} \) capacitor is charged to 57 V by a battery, which is then removed. At time \(t = 0 \), a 12 mH coil is connected in series with the capacitor to form an LC oscillator (Fig 1).
 (a) What is the potential difference \(v_L(t) \) across the inductor as a function of time?
 (b) What is the maximum rate \((di/dt)_{\text{max}} \) at which the current \(i \) changes in the circuit?

4. Using the conservation of energy principle deduce the differential equation that governs the charge dynamics in the circuit shown in figure 2.

5. A series RLC circuit has inductance \(L = 12 \text{ mH} \), capacitance \(C = 1.6 \mu \text{F} \), and resistance \(R = 1.5 \Omega \) and begins to oscillate at time \(t = 0 \).
 (a) At what time \(t \) will the amplitude of the charge oscillations in the circuit be 50% of its initial value?
 (b) How many oscillations are completed within this time?

6. Consider the circuit shown in Fig. 3. With switch \(S_1 \) closed and the other two switches open, the circuit has a time constant \(\tau_C \). With switch \(S_2 \) closed and the other two switches open, the circuit has a time constant \(\tau_L \). With switch \(S_3 \) closed and the other two switches open, the circuit oscillates with a period \(T \). Show that \(T = 2\pi\sqrt{\tau_C\tau_L} \).
7. A series RLC circuit, driven with $\varepsilon_{\text{rms}} = 120 \, V$ at frequency $f_d = 60.0 \, \text{Hz}$, contains a resistance $R = 200 \, \Omega$, an inductance with inductive reactance $X_L = 80.0 \, \Omega$, and a capacitance with capacitive reactance $X_C = 150 \, \Omega$

(a) What are the power factor $\cos \phi$ and phase constant ϕ of the circuit?
(b) What is the average rate P_{avg} at which energy is dissipated in the resistance?
(c) What new capacitance C_{new} is needed to maximize P_{avg} if the other parameters of the circuit are not changed?

8. Choose approximate values for L and C for an FM radio so that the amplitude of the next station is 1/100 the amplitude of the “tuned” station, given that the circuit has a resistance of 0.6 Ω.