Oscillations and Waves

Tutorial: Waves

Bing Chu

Electronics and Computer Science
University of Southampton
Email: b.chu@ecs.soton.ac.uk
Office: Building 1, Room 2031
Answer:

\[y_m = 0.0127 \text{ m} \]
Question B

The equation of a transverse wave traveling along a very long string is \(y = 6.0 \sin(0.020 \pi x + 4.0 \pi t) \), where \(x \) and \(y \) are expressed in centimeters and \(t \) is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave, and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at \(x = 3.5 \text{ cm} \) when \(t = 0.26 \text{ s} \)?

Answer:

\[y_m = 0.06 \text{ m}, \lambda = 1 \text{ m}, f = 2 \text{ Hz} \]
\[v = 2 \text{ m/s}, -v_{max} = 0.75 \text{ m/s}, \]
\[y(3.5 \text{ cm}, 0.26 \text{ s}) = -0.02 \text{ m} \]
A sinusoidal wave is traveling on a string with speed 40 cm/s. The displacement of the particles of the string at \(x = 10 \) cm varies with time according to \(y = (5.0 \text{ cm}) \sin[1.0 - (4.0 \text{ s}^{-1})t] \). The linear density of the string is 4.0 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form \(y(x, t) = y_m \sin(kx \pm \omega t) \), what are (c) \(y_m \), (d) \(k \), (e) \(\omega \), and (f) the correct choice of sign in front of \(\omega \)? (g) What is the tension in the string?

Answer:

\[
f = 0.64 \text{ Hz}, \lambda = 0.63 \text{ m}, y_m = 0.05 \text{ m} \]

\[
k = 10/\text{m}, \omega = 4.0 \text{ rad/s}, -, \tau = 0.064 \text{ N}
\]
A sinusoidal wave moving along a string is shown twice in Fig. 16-32, as crest A travels in the positive direction of an x axis by distance $d = 6.0$ cm in 3.0 ms. The tick marks along the axis are separated by 10 cm; height $H = 6.00$ mm. If the wave equation is of the form $y(x, t) = y_m \sin(kx \pm \omega t)$, what are (a) y_m, (b) k, (c) ω, and (d) the correct choice of sign in front of ω?

Answer:

\[
y_m = 3.0 \text{ mm}, \quad k = 16 \text{ rad/s} \\
\omega = 3.2 \times 10^2 \text{ rad/s}
\]
Question E

A rope, under a tension of 200 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by

\[y = (0.10 \text{ m})(\sin \frac{\pi x}{2}) \sin 12 \pi t, \]

where \(x = 0 \) at one end of the rope, \(x \) is in meters, and \(t \) is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c) the mass of the rope? (d) If the rope oscillates in a third-harmonic standing wave pattern, what will be the period of oscillation?

Answer:

\[L = 4.0 \text{ m}, \quad v = 24 \text{ m/s}, \quad m = 1.4 \text{ kg}, \quad T = 0.11 \text{ s} \]
Question F

For a certain transverse standing wave on a long string, an antinode is at \(x = 0 \) and an adjacent node is at \(x = 0.10 \) m. The displacement \(y(t) \) of the string particle at \(x = 0 \) is shown in Fig. 16-39, where the scale of the \(y \) axis is set by \(y_s = 4.0 \) cm. When \(t = 0.50 \) s, what is the displacement of the string particle at (a) \(x = 0.20 \) m and (b) \(x = 0.30 \) m? What is the transverse velocity of the string particle at \(x = 0.20 \) m at (c) \(t = 0.50 \) s and (d) \(t = 1.0 \) s? (e) Sketch the standing wave at \(t = 0.50 \) s for the range \(x = 0 \) to \(x = 0.40 \) m.

Answer: \[y(0.20 \text{ m}, 0.50 \text{ s}) = 0.040 \text{ m} \]
\[y(0.30 \text{ m}, 0.50 \text{ s}) = 0 \text{ m} \]
\[u(0.20 \text{ m}, 0.50 \text{ s}) = 0 \text{ m/s} \]
\[u(0.20 \text{ m}, 1 \text{ s}) = -0.13 \text{ m/s} \]
Oscillations and Waves

Tutorial: Waves

Bing Chu

Electronics and Computer Science
University of Southampton
Email: b.chu@ecs.soton.ac.uk
Office: Building 1, Room 2031